Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh đẳng thức:
\(\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\tan^2x-1}=\sin x+\cos x\)
\(\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\tan^2x-1}\)
\(=\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\frac{\sin^2x-\cos^2x}{\cos^2x}}\)
\(=\frac{\sin^2x}{\sin x-\cos x}-\frac{\cos^2x}{\sin x-\cos x}=\sin x+\cos x\)
Xong
a+b+c : dựa vào cái hệ thức \(\sin^2\alpha+\cos^2\alpha=1\)
a) Ta có : \(\left(\sin x+\cos x\right)^2\)
\(=\sin^2x+2.\sin x.\cos x+\cos^2x\)
\(=1+2.\sin x.\cos x\left(đpcm\right)\)
b) Ta có : \(\left(\sin x+\cos x\right)^2+\left(\sin x-\cos x\right)^2\)
\(=\sin^2x+2.\sin x.\cos x+\cos^2x+\sin^2x-2.\sin x.\cos x+\cos^2x\)
\(=\sin^2x+\cos^2x+\sin^2x+\cos^2x\)
\(=2\left(\sin^2x+\cos^2x\right)\)
\(=2\times1=2\left(đpcm\right)\)
c) Ta có : \(\sin^4x+\cos^4x\)
\(=\left(\sin^2x\right)^2+\left(\cos^2x\right)^2\)
\(=\left(\sin^2x+\cos^2x\right)^2-2.\sin^2x.\cos^2x\)
\(=1-2.\sin^2x.\cos^2x\left(đpcm\right)\)
Vậy ...
\(\frac{2cos^2x-\left(cos^2x+sin^2x\right)}{cosx+sinx}=\frac{cos^2x-sin^2x}{cosx+sinx}=\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{\left(cosx+sinx\right)}\)
\(=cosx-sinx\)
\(VT=\frac{2\cos^2x-1}{\cos x+\sin x}=\frac{2\cos^2x-\cos^2x-\sin^2x}{\cos x+\sin x}\)\(=\frac{\cos^2x-\sin^2x}{\cos x+\sin x}=\frac{\left(\cos x+\sin x\right)\left(\cos x-\sin x\right)}{\cos x+\sin x}\)
\(=\cos x-\sin x=VP\)
=> đpcm
a) \(\dfrac{1}{1+tan\alpha}+\dfrac{1}{1+cot\alpha}\)
\(=\dfrac{1}{1+\dfrac{1}{cot\alpha}}+\dfrac{1}{1+cot\alpha}\)
\(=\dfrac{1}{\dfrac{cot\alpha+1}{cot\alpha}}+\dfrac{1}{1+cot\alpha}\)
\(=\dfrac{cot\alpha}{cot\alpha+1}+\dfrac{1}{1+cot\alpha}\)
\(=\dfrac{cot\alpha+1}{cot\alpha+1}=1\) (đpcm)
b) \(tan^2x+cot^2x+2\)
\(=\dfrac{sin^2x}{cos^2x}+\dfrac{cos^2x}{sin^2x}+2\)
\(=\dfrac{sin^2x}{cos^2x}+1+\dfrac{cos^2x}{sin^2x}+1\)
\(=\dfrac{sin^2x+cos^2x}{cos^2x}+\dfrac{cos^2x+sin^2x}{sin^2x}\)
\(=\dfrac{1}{cos^2x}+\dfrac{1}{sin^2x}\) (đpcm)
c) \(sinx.cosx.\left(1+tanx\right)\left(1+cotx\right)\)
\(=\left(sinx.cosx+sinx.cosx.tanx\right)\left(1+cotx\right)\)
\(=\left(sinx.cosx+sinx.cosx.\dfrac{sinx}{cosx}\right)\left(1+cotx\right)\)
\(=\left(sinx.cosx+sin^2x\right)\left(1+cotx\right)\)
\(=\left(sinx.cosx+sin^2x\right)\left(1+\dfrac{cosx}{sinx}\right)\)
\(=sinx.cosx+cos^2x+sin^2x+sinx.cosx\)
\(=1+sin^2x.cos^2x\)
Câu cuối không biết chỗ sai, mong mọi người chỉ bảo ạ ^^
cho tam giác ABC vuông tại A có ^B = x
Ta có : \(sinx=\frac{AC}{BC}\Rightarrow sin^2x=\left(\frac{AC}{BC}\right)^2\)(1)
\(cos=\frac{AB}{BC}\Rightarrow cos^2x=\left(\frac{AB}{BC}\right)^2\)(2)
Cộng (1) ; (2) ta được : \(\frac{AC^2}{BC^2}+\frac{AB^2}{BC^2}=\frac{AC^2+AB^2}{BC^2}=\frac{BC^2\left(pytago\right)}{BC^2}=1\)
Vậy ta có đpcm