Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu Chia hết cho 10 thì chia hết cho cả 2 và 5
Ta có: 316 = (32)8 = 98
Ta có: nếu 9chẵn tận cùng là 1
=> 98 = (..........1)
=> 98 - 1 = (.......1 - 1)
98 = (............0) nên chia hết cho 10
Vậy 316 chia hết cho 10
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự
13!+9^10-1
ta có 13! có chữ số tận cùng là 0
9^10-1=(9^2)^5=(....1)^5-1=...1-1=...0
=>13!+9^10-1 có chữ số tận cùng là 0
=> 13!+9^10-1 chia hết cho 2 và5
910=92.92...92=81.81...81=...1
=>910-1=..1-1=...0
13! có tận cùng =0 =>13!+910-1 có tận cùng =0 sẽ chia hết cho 2;5
Các số có 2 chữ số là: 10, 11, 12,..., 99
=> Tổng của tất cả các số có 2 chữ số là:
10+11+12+....+99
Xét tổng trên có: (99-10):1+1=90 ( số hạng)
=> Tổng của các số có 2 chữ số là:
(99+10)*90:2=4905
Mà \(4905⋮5,4905⋮9\)
Vậy tổng của tất cả các số có 2 chữ số là 1 số chia hết cho 5 và 9
~Hok tốt~
Số các số có 2 chữ số là
\(\left(99-10\right):1+1=90\)
Tổng của các số có 2 chữ số là
\(\left(10+99\right)\times90:2=4905\)
Ta thấy \(\hept{\begin{cases}4905⋮5\\4905⋮9\end{cases}}\)
=> tổng các số có hai chữ số là 1 số chia hết cho 5 và 9.
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1