Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai số chẵn liên tiếp có dạng là 2k và (2k+1) với kEN
Tích của hai số này là 4k(k+1)
Ta có: k.(k+1) chia hết cho 2
Suy ra: 4k(k+1)chia hết cho 8
Vậy suy ra ĐPCM
Cố gắng lên nha bạn!
Gọi 2 số chẵn liên tiếp là 2k và 2k + 2 (k thuộc Z)
Xét: 2k(2k + 2) = 4k(k + 1)
Vì 4 chia hết cho 4; k(k + 1) chia hết cho 2 (tích 2 số chẵn liên tiếp)
=> 4k(k + 1) chia hết cho 8
hay 2k(2k + 2) chia hết cho 8
Vậy: 2 số chẵn liên tiếp luôn chia hết cho 8
Một số chẵn có dạng: 2k
=> tích 2 số chắn liên tiếp là:2kx(2k+2)
=4xkxk+4xk
=4xk(k+1)chia hết cho 4
Mà kx(k+1) là tích 2 số tự nhiên liên tiếp
=>kx(k+1) chia hết cho 2
=>4xkx(k+1) chia hết cho 2x4
=>4xkx(k+1) chia hết cho 8
Vậy tích 2 số chẵn liên tiếp luôn chia hết cho 8
Gọi 2 số chẵn liên tiếp là 2a, 2a+2
2a.(2a+2)=4a.(a+1)
Ta có: a.(a+1)⋮2
⇒ 4a.(a+1)⋮2.4
⇒ 4a.(a+1)⋮8 (đpcm)