Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
Gọi: \(A=n^2+4\)và \(B=n^2+16\)
Ta có: \(A=n^2+4=n^2-1+5=\left(n-1\right)\left(n+1\right)+5\)(1)
và \(B=n^2+16=n^2-4+20=\left(n-2\right)\left(n+2\right)+20\)(2)
Vì A;B là số nguyên tố nên từ (1) và (2) suy ra: \(\left(n-1\right)\left(n+1\right)\)và \(\left(n-2\right)\left(n+2\right)\)không chia hết cho 5.
Mặt khác, tích của 5 số tự nhiên liên tiếp: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)phải chia hết cho 5.
Suy ra n chia hết cho 5. ĐPCM.
clink vào Câu hỏi tương tự hoặc ghi lại đề vào tìm ô Tìm câu hỏi.
Với mọi số tự nhiên b , ta đều có b<b+1
Gán n = b+1 thì b<n (1)
Với mọi số tự nhiên a khác 0 suy ra 1<=a (2).
Nhân vế với vế của (1) và (2) (các vế là dương) ta luôn có: b<na ĐPCM.
Thực ra, bài toán này tồn tại vô số n để b<na mà n = b+1 chỉ là 1 họ nghiệm. Khi ta thay n = b+m (với m>0) thì đề bài luôn đúng.
Số có bốn chữ số tổng quát là 1000.a+b.100+c.10+d .
Theo bài a+b+c+d=11 (1)
Cho a+c−b−d/11=k (k thuoc Z) (2)
a;b;c;d \(\le\) 9 => k thuoc {0;1;-1}.
Sở dĩ như vậy vì nếu k=2 => (a+c)-(b+d)=22 vô lí
TH1: k=0 => a+c-(b+d)=11.k. (3)
Tu (1);(3) ta được 2.(a+c)=11.(1+k) => 2.(a+c)=11 => a+c=5,5 vô lí nên loại.
TH2: k=-1 => 2.(a+c)=11.(1+k)=0 => a=c=0 vô lí nên loại.
TH3: k=1 .
lấy (1) trừ đi (3) 2.(b+d)=11.(1-k)
=> b=d=0 => nếu a=2 thi c=9
a=3 => c=8
a=4 => c=7
a=5 => c=6
a=6 => c=5
a=7 => c=4
a=8 => c=3
a=9 => c=2
Vậy các số cần tìm là: 2090;3080;4070;5060;6050;7040;8030;9020
lik e nhe
số có 4 chữ số chia hết cho 11 và tổng các chữ số chia hết cho 11
abcd =11q ; a+b+c+d = 11.p
=> a + c - ( b+d) chia hết cho 11
=>a+b+c+d + a+c -b-d = 2(a + c) chia hết cho 11
=>a + c chia hết cho 11 => a +c =11 =2+9=3+8=4+7 =5+6
=> b+d chia hết cho 11=> b+d =11 = 2+9=3+8 ...............
abcd =( 2299; 2992;9229;9922 ); ( 3388; ......); (.............); (............)
Vậy có 4.4 =16 số như vậy
P/s làm nhé :)
d là số nguyên tố nên d = { 2 ; 3 ; 5 ; 7 }
abcd là số chính phương mà số chính phương ko bao h tận cùng là 2 ; 3 ; 7 suy ra d = 5
abc5 chia hết cho 9 và 5 và là số chính phương nên ta có thể viết abc5 = 9.5.5a^2
Suy ra abc5 = ( 3.5.a )^2 = 15a^2
Tới đây cậu tự xét các trường hợp nhé :)
Đề sai rồi. Chỉ cần \(3\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}\right)=\frac{49}{12}>4\) thì cần gì tới 4 số phải bằng nhau nữa.