Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(n\left(2n-3\right)-2n\left(n+1\right)=n\left(2n-3\right)-n\left(2n+2\right)=n\left(2n-3-2n-2\right)\)
\(=n\left(-5\right)=-5n\) chia hết cho 5 với n thuộc Z
b)\(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)=\left(n^2+3n-4\right)-\left(n^2-3n-4\right)\)
\(=n^2+3n-4-n^2+3n+4=6n\) chia hết cho 6 với n thuộc Z
đặt A = n . ( 2n + 7 ) . ( 7n + 1 )
Ta thấy trong 2 số n và 7n + 1 sẽ có 1 số chẵn với mọi n thuộc N
A = n . ( 7n + 1 ) \(⋮\)2 ( 1 )
Ta cần chứng minh : n . ( 2n + 7 ) . ( 7n + 1 ) \(⋮\)3
Giả sử : n = 3k + r ( k \(\in\)N , r = { 0 ; 1 ;2 } )
với n = 3k \(\Rightarrow\)n \(⋮\)3 \(\Rightarrow\)A \(⋮\)3
với n = 3k + 1 \(\Rightarrow\)2n + 7 = 6k + 9 \(⋮\)3 \(\Rightarrow\)A \(⋮\)3
với n = 3k + 2 \(\Rightarrow\)7n + 1 = 21k + 15 \(⋮\)3 \(\Rightarrow\)A \(⋮\)3
Như vậy, A \(⋮\)3 \(\forall\)n \(\in\)N ( 2 )
Mà ( 2 ; 3 ) = 1
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)A \(⋮\)6
Để n4 + 2n3 - n2 - 2n chia hết cho 24 thì phải chia hết cho 4 và 6
Ta có \(n^4+2n^3-n^2-2n=n^2\left(n^2-1\right)+2n\left(n^2-1\right)\)
\(=\left(n^2-1\right)\left(n^2+2\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Biểu thức trên có tích là 4 số nguyên liên tiếp nên sẽ chia hết cho 4
Để biểu thức chia hết cho 6 thì phải chia hết cho 2 và 3.Biểu thức trên là tích của 4 số nguyên liên tiếp nên sẽ chia hết cho 2 va cũng có ít nhất 1 số chia hết cho 3 nên sẽ chia hết cho 6
Vậy biểu thức chia hết cho 24
Để n4 + 2n3 - n2 - 2n chia hết cho 24 thì phải chia hết cho 4 và 6
Ta có
�
4
+
2
�
3
−
�
2
−
2
�
=
�
2
(
�
2
−
1
)
+
2
�
(
�
2
−
1
)
n
4
+2n
3
−n
2
−2n=n
2
(n
2
−1)+2n(n
2
−1)
=
(
�
2
−
1
)
(
�
2
+
2
)
=
(
�
−
1
)
�
(
�
+
1
)
(
�
+
2
)
=(n
2
−1)(n
2
+2)=(n−1)n(n+1)(n+2)
Biểu thức trên có tích là 4 số nguyên liên tiếp nên sẽ chia hết cho 4
Để biểu thức chia hết cho 6 thì phải chia hết cho 2 và 3.Biểu thức trên là tích của 4 số nguyên liên tiếp nên sẽ chia hết cho 2 va cũng có ít nhất 1 số chia hết cho 3 nên sẽ chia hết cho 6
Vậy biểu thức chia hết cho 24
Đúng ko nek
Xét n=0 => 62n+1 + 5n+2 = 31chia hết 31
Xét n=1 => 62n+1 + 5n+2 = 341 chia hết 31
Giả sử mệnh đề đúng với n = k,tức là có 62k+1 + 5k + 2,ta sẽ chứng minh mệnh đề đúng với n = k+1 tức là chứng minh 62k+3 + 5k+3
Ta có 62k+1 + 5k+2 = 36k .6+5k .25 chia hết 31
<=> 62k+3 + 5k+3 = 36k .216+5k .125
Xét hiệu : 62k+3 + 5k+3 − 62k+1 − 5k+2 = 36k .216+5k .125−36k .6−5k .25
= 36k .210+5k .100 = 36k .207+5k .93−7(36k−5k ) Có 217 chia hết 31, 93 chia hết 31và 36k−5k chia hết 36 - 5 = 31
=> 62n+3 + 5k+3 − 62k+1 − 5k+2 chia hết 31
. Mà 62k+1 + 5k+2 chia hết 31 nên 62k+3 + 5k+3 chia hết 31
Phép quy nạp được chứng minh hoàn toàn,ta có đpcm
:D
Ta có: \(6^2\equiv5\left(mod31\right)\)
\(\Rightarrow6^{2n}\equiv5^n\left(mod31\right)\)
\(6^{2n+1}\equiv6.5^n\left(mod31\right)\)
Lại có: 5\(5\equiv5\left(mod31\right)\)
\(\Rightarrow5^n\equiv5^n\left(mod31\right)\)
\(\Rightarrow5^{n+2}\equiv25.5^n\left(mod31\right)\)
\(\Rightarrow6^{2n+1}+5^{n+2}\equiv31.5^n\left(mod31\right)\)
\(\Rightarrow6^{2n+1}+5^{n+2}⋮31\)
2n-3 chia hết cho n+1
=>2n+2-5 chia hết cho n+1
=>2(n+1)-5 chia hết cho n+1
Mà 2(n+1) chia hết cho n+1=>5 chia hết cho n+1
=>n+1 thuộc Ư(5)={1;-1;5;-5}
TH1:n+1=1,=>n=0 thuộc Z
TH2:n+1=-1=>n=-2 thuộc Z
TH3:n+1=5=>n=4 thuộc Z
TH4:n+1=-5=>n=-6 thuộc Z
Vậy n thuộc {0;-2;4;-6}
Chúc Bạn Học Tốt !!!
\(2n-3⋮n+1\)
\(\Rightarrow2n+2-5⋮n+1\)
\(\Rightarrow2\left(n+1\right)-5⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\inƯ\left(5\right)\)
\(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\left[{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=-1\Rightarrow n=-2\\n+1=5\Rightarrow n=4\\n+1=-5\Rightarrow n=-6\end{matrix}\right.\)
\(2n-3⋮n+1\)
Mà \(n+1⋮n+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2n-3⋮n+1\\2n+2⋮n+1\end{matrix}\right.\)
\(\Leftrightarrow5⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(5\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}n+1=1\\n+1=5\\n+1=-1\\n+1=-5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=0\\n=4\\n=-2\\n=-6\end{matrix}\right.\)
Vậy ..
mk không hiểu cách làm này ạ,bạn có thể giải thích kĩ cho mình được không '-'
\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^n.27+3^n.3+2^n.8+2^n.4\)
\(=3^n\left(27+3\right)+2^n\left(8+4\right)\)
\(=3^n.30+2^n.12⋮6\left(dpcm\right)\)
Cách 1:Nếu biết dùng p2 quy nạp thì có 1 cách giải được bài này:
*với n=1 ta có :1.2.3 chia hết cho 6
*Giả sử với n=k mênh đề đúng: k(k+1)(2k+1) chia hết cho 6
-> với n=k+1 ta có: (k+1)(k+2)(2(k+1)+1)
=(k+1)(k+2)(2k+3)
=2k(k+1)(k+2)+3(k+1)(k+2) (1)
vi k(k+1)(K+2) chia hết cho 6 (ở trên)
và (k+1)(k+2) là hai số liên tiếp nên 3(k+1)(k+2) chia hết cho 6
=> (1) luôn chia hết cho 6
=> mênh đề đúng với mọi n thuộc Z
cách 2:
n(n+1)(2n+1)
=n(n+1)(n+2+n-1)
=n(n+1)(n+2) + (n-1)n(n+1) (2)
vì tích 3 số liên tiếp chia hết cho 6
từ (2) ta có tổng của hai số chia hết cho 6 thì cũng chia hết cho 6
=> biểu thức trên đúng với mọi n thuộc Z