Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
\(1.a,10^n-1=100..0-1\)(n chữ số 0)=999..99(n chữ số 9)chia hết cho (vì có tổng bằng 9+9+..+9 chia hết cho 9)
\(b,10^n+8=100..0+8\)(n chữ số 0) = 1000...08.
Tổng các chữ số là: 1+0+0+...+8=9 chia hết cho 9.
2.
Tạm thời mik chỉ bik lm bài 1 nên pn thông cảm nhé
1 a) pn thao khảo tại nhé do ở đây có bài giống nên mik gửi link luôn nhé! http://olm.vn/hoi-dap/question/651590.html
b) Ta có: 10n+8= 1000000000000.......000+8
n chữ số 0
=> 10n+8= 10000000000........008
n chữ số 8
Ta có tổng các chữ số của 10n+8 bằng: 1+00000000.....000 ( Với n chữ số 0)+8= 1+0+8=9
Vì 9 chia hết cho 9 => 10n+8 chia hết cho 9
Ta tách 2n + 111...1 = 3n + (111..1 - n)
n chữ số n chữ số
Vì 1 số và tổng các chữ của nó có cùng số dư trong phép chia cho 3 nên 111...1(n chữ số 1) và n có cùng số dư trong phép chia cho 3 nên 111...1 - n chia hết cho 3
Mà 3n chia hết cho 3 => Vế phải chia hết cho 3. Vậy thì vế trái cũng chia hết cho 3 hay 2n + 111...1 chia hết cho 3
Chứng minh rằng 2n + 111....11 ( n chữ số 1 ) chia hết cho 3 ( n là số tự nhiên )
*Với n=3k , ta có :
\(2n+111...11=2.3k+111...11⋮3\) (1)
*Với n = 3k +1 , ta có :
\(2n+111...11=2.3k+1+111...11\)
\(=2.3k+111...12⋮3\) (2)
Từ (1) và (2) => \(2n+111...11⋮3\)