Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\left(đpcm\right)\)
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\left(đpcm\right)\)
\(M=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\frac{9999}{10000}\)
\(=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot\cdot\cdot\cdot\frac{99.101}{100.100}\)
\(=\frac{1}{2}\cdot\frac{101}{100}=\frac{101}{200}\)
Xét vế phải :
\(VP=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)
\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)
\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=VT\Rightarrow\left(đpcm\right)\)
\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{49}+\frac{1}{50}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{40}+\frac{1}{50}-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}\)
Vậy .....(tự kết luận)
CMR: \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)
\(VT=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-1-\frac{1}{2}-...-\frac{1}{25}\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}^{\left(đpcm\right)}\)
Lời giải:
Ta có:
$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}$
$=(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{49})-(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50})$
$=(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{49}+\frac{1}{50})-2(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50})$
$=(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{49}+\frac{1}{50})-(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{25})$
$=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}$
1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+...+1/50
=1/1-1/2+1/3-1/4+...+1/49-1/50
=(1/1+1/3+...+1/49)-(1/2+1/4+...+1/50)
=(1/1+1/2+1/3+...+1/49+1/50)-2(1/2+1/4+...+1/50)
=1/1+1/2+1/3+...+1/50-1-1/2-1/3-...-1/25
=1/26+1/27+...+1/50 (đpcm)
Ta có:
1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50 = 1/26 + 1/27 + 1/28 + .. + 1/50
Xét vế trái:
1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50
= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/49 - 1/50
= ( 1 + 1/3 + 1/5 + ... + 1/49 ) - ( 1/2 + 1/4 + 1/6 + ... + 1/50 )
= ( 1 + 1/3 + 1/5 + ... + 1/49 ) + (1/2 + 1/4 + 1/6 + ... + 1/50 ) - 2 . ( 1/2 + 1/4 + 1/6 + ... + 1/50 )
= ( 1 + 1/2 + 1/3 + 1/4 + ...+ 1/49 + 1/50 ) - ( 1 + 1/2 + 1/3 + ... + 1/25 )
= 1/26 + 1/27 + 1/28 + ... + 1/49 + 1/50 (1)
Từ (1) => Vế trái = Vế phải
=> Điều phải chứng minh
- HokTot -