Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3^2}<\frac{1}{2.3}\)
\(\frac{1}{4^2}<\frac{1}{3.4}\)
...
\(\frac{1}{100^2}<\frac{1}{99.100}\)
===>\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}<\frac{50}{100}=\frac{1}{2}\)
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2016^2}\)
\(=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{1008^2}\right)< \frac{1}{2^2}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1007.1008}\right)\)
\(< \frac{1}{4}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1007}-\frac{1}{1008}\right)\)
\(< \frac{1}{4}.\left(2-\frac{1}{1008}\right)< \frac{1}{4}.2=\frac{1}{2}\)
=> đpcm
có: 1/3^2<1/2.3; 1/4^2<1/3.4:...: 1/100^2<1/99.100
Mà: 1/1.2+1/2.3+...+1/99.100=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100
=99/100
=> 1/3^2+1/4^2+...+1/100^2<99/100<1
=> đpcm
UNDERSTAND ???
a) Để â nhận giá trị nguyên
\(\Rightarrow8n-9⋮2n+5\)
\(\Rightarrow8n+20-29⋮2n+5\)
\(\Rightarrow4.\left(2n+5\right)-29⋮2n+5\)
mà \(4.\left(2n+5\right)⋮2n+5\)
\(\Rightarrow-29⋮2n+5\)
\(\Rightarrow2n+5\inƯ\left(-29\right)\)
tự làm nốt nhé, tick nha
`1/4+1/16+1/36+...+1/196`
`= 1/(2^2)+1/(4^2)+1/(6^2)+....+1/(4^2)`
`= 1/(2^2)*( 1/ + 1/( 2^2 ) + 1/(3^2)+.....+1/(7^2))`
Ta có : `1/(2^2)<1/(1*2)=1-1/2`
`1/(3^2)<1/(2*3)=1/2-1/3`
`.....`
`1/(7^2)<1/(6*7)=1/6-1/7`
Do `1/( 2^2 ) + 1/(3^2)+.....+1/(7^2)<1-1/2+1/2-1/3+.....+1/6-1/7=1-1/7<1`
`=> 1/ + 1/( 2^2 ) + 1/(3^2)+.....+1/(7^2)<2`
`=> 1/(2^2)*( 1/ + 1/( 2^2 ) + 1/(3^2)+.....+1/(7^2))<1/2`
`=>1/4+1/16+1/36+...+1/196<1/2`
Vậy `1/4+1/16+1/36+....+1/196<1/2`
A < 1/(1.2) + 1/(2.3) + 1/(3.4) + ...+ 1/(99.100)
<=> A< 1- 1/2 + 1/2 - 1/3 + 1/4 - 1/5 + .. + 1/99 - 1/100
<=> A < 1 - 1/100 < 1 (đpcm)
So với thì đây
đặt A=1/3²+1/4²+1/5²+……1/100²
B=1/2.3+1/3.4+...+1/99.100
=1/2-1/3...+1/99-1/100
=1/2-1/100<1/2 (1)
mà A=1/3²+1/4²+1/5²+……1/100²<B=1/2.3+1/3.4+...+1/99.100 (2)
kết hợp từ (1),(2)ta được A<B<1/2
=>A<1/2