K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

a) Phân tích  15 n   + 15 n + 2 = 113.2. 15 n .

b) Phân tích  n 4   –   n 2 = n 2 (n - 1)(n +1).

b) Ta có: \(n^4-n^2=n^2\left(n^2-1\right)=n\cdot n\cdot\left(n-1\right)\cdot\left(n+1\right)\)

*Trường hợp 1: n chia 2 dư 1

\(\Leftrightarrow\left\{{}\begin{matrix}n-1⋮2\\n+1⋮2\end{matrix}\right.\)

\(\Leftrightarrow n\cdot n\cdot\left(n-1\right)\left(n+1\right)⋮4\)

hay \(n^4-n^2⋮4\)(1)

*Trường hợp 2: n chia hết cho 2

\(\Leftrightarrow n^2⋮4\)

\(\Leftrightarrow n\cdot n\cdot\left(n-1\right)\left(n+1\right)⋮4\)

hay \(n^4-n^2⋮4\)(2)

Từ (1) và (2) suy ra \(n^4-n^2⋮4\forall n\in N\)(đpcm)

d) Ta có: \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Ta có: n và n-1 là hai số tự nhiên liên tiếp

\(\Leftrightarrow n\cdot\left(n-1\right)⋮2\)

\(\Leftrightarrow n\cdot\left(n-1\right)\cdot\left(n+1\right)⋮2\)

\(\Leftrightarrow n^3-n⋮2\)(3)

Ta có: n, n-1 và n+1 là ba số tự nhiên liên tiếp

\(\Leftrightarrow n\cdot\left(n-1\right)\cdot\left(n+1\right)⋮3\)

\(\Leftrightarrow n^3-n⋮3\)(4)

Từ (3), (4) và ƯCLN(3,2)=1 suy ra \(n^3-n⋮3\cdot2\)

hay \(n^3-n⋮6\forall n\in N\)

a) Ta có: \(15^n+15^{n+2}=15^n+15^n\cdot225\)

\(=15^n\cdot\left(1+225\right)=15^n\cdot226=2\cdot15^n\cdot113⋮113\forall n\in N\)

c) Ta có: \(50^{n+2}-50^{n+1}\)

\(=50^n\cdot2500-50^n\cdot50\)

\(=50^n\cdot\left(2500-50\right)=50^n\cdot2450\)

\(=10\cdot50^n\cdot245⋮245\forall n\in N\)(đpcm)

26 tháng 8 2019

\(15^n+15^{n+2}=15^n\left(1+15^2\right)\)

\(=15^n.226=15^n.2.113\)

Vậy \(15^n+15^{n+2}\)chia hết cho 113 với mọi số tự nhiên n.

Hok tốt! k mk nha^^

\(15^n+15^{n+2}=15^n\left(1+15^2\right)\)

         \(=15^n\cdot226=15^n\cdot2\cdot113⋮113\forall n\left(dpcm\right)\)

20 tháng 4 2018

a/ \(n=2m+1\)

\(\Rightarrow\left[\left(2m+1\right)^2+8\left(2m+1\right)+15\right]=4\left(m+2\right)\left(m+3\right)⋮8\)

b/ \(\frac{n^2+1}{n+1}=n-1+\frac{2}{n+1}\)

Để nó chia hết thi n + 1 là ước nguyên của 2

\(\Rightarrow\left(n+1\right)=\left(-2;-1;1;2\right)\)

\(\Rightarrow n=\left(-3,-2,0,1\right)\)

7 tháng 1 2018

a) Gợi ý: phân tích 50 n + 2   -   50 n + 1 = 245.10. 50 n .

b) Gợi ý: phân tích n 3  - n = n(n - 1)(n +1).

10 tháng 9 2018

a) Ta có: ( 3 n   -   1 ) 2  - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).

Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên  ( 3 n   -   1 ) 2  - 4 chia hết cho 3 với mọi số tự nhiên n;

b) Ta có: 100 - ( 7 n   +   3 ) 2  =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 62/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 83/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 94/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 95/CM n^5-5n^3+4n chia hết cho 120 vơi...
Đọc tiếp

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6

2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8

3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9

4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9

5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n

6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n

7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n

8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49

9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương

10/CMR với mọi số tự nhiên n>1:

a/ số n^4 +4 là hợp số

b/ số n^4+4k^4 là hợp số (k là số tự nhiên)

11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5

12/ Số 2^32+1 có là số nguyên tố không?

13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)

14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n

15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia

                               

6
14 tháng 7 2016

nhìn là hết muốn làm

14 tháng 7 2016

sao dài dòng quá vậy, như thế thì ai mà làm nổi, bạn phải hỏi từng bài 1 chứ

Nhìn là muốn chạy rùi

^-^

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 62/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 83/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 94/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 95/CM n^5-5n^3+4n chia hết cho 120 vơi...
Đọc tiếp

1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6

2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8

3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9

4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9

5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n

6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n

7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n

8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49

9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương

10/CMR với mọi số tự nhiên n>1:

a/ số n^4 +4 là hợp số

b/ số n^4+4k^4 là hợp số (k là số tự nhiên)

11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5

12/ Số 2^32+1 có là số nguyên tố không?

13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)

14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n

15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia

                               

7
11 tháng 8 2015

đăng giết người à           

11 tháng 8 2015

Nhìn là hết muốn làm.

26 tháng 7 2021

a) (n+3)\(^2\)- (n+1)\(^2\) = (n+3-n-1).(n+3+n+1) = 2(2n+4) = 4(n+2) 

Sẽ ko chia hết cho 8 nếu n là số lẻ!

b) (n+6)\(^2\)- (n-6)\(^2\) = (n+6-n+6).(n+6+n-6) = 12.2n = 24n chia hết cho 6 với mọi n

Xin 1 like nha bạn. Thx bạn, chúc bạn học tốt