Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1: \(\left(x+y\right)\left(x-y\right)=x\left(x-y\right)+y\left(x-y\right)=x^2-xy+xy-y^2=x^2-y^2\)
C2: x2-y2=(x-y)(x+y)
<=> x2-y2-(x-y)(x+y)=0
<=> x2-y2-[x(x+y)-y(x+y)] = 0
<=> x2-y2-(x2+xy-xy-y2) = 0
<=> x2-y2-(x2-y2) = 0
<=> x2-y2-x2+y2 = 0
<=> 0 =0 (đúng)
Vậy .....
đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải
Lấy hai vế trừ đi cho nhau rồi nếu có kết quả =0 thì hai hằng đẳng thức này bằng nhau
Xét vế trái ta có :
\(x^4+y^4+\left(x+y\right)^4\)
= \(x^4+y^4+\left(\left(x+y\right)^2\right)^2\)
= \(x^4+y^4+\left(x^2+y^2+2xy\right)^2\)
= \(x^4+y^4+x^4+y^4+4x^2y^2+2x^2y^2+4x^3y+4xy^3\)
= \(2x^4+2y^4+6x^2y^2+4x^3y+4xy^3\)
= \(2\left(x^4+y^4+3x^2y^2+2x^3y+2xy^3\right)\)
= \(2\left(x^4+y^4+x^2y^2+2x^2y^2+2x^3y+2xy^3\right)\)
= \(2\left(x^2+xy+y^2\right)^2\)
=VP
Vậy đăng thức đã được chứng minh