K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2018

      \(9x^2-6x+3\)

\(=\left(9x^2-6x+1\right)+2\)

\(=\left(3x-1\right)^2+2\)

Vì    \(\left(3x-1\right)^2\ge0\)

\(\Rightarrow\)\(\left(3x-1\right)^2+2>0\)

hay    \(9x^2-6x+1>0\)

12 tháng 4 2018

Ta có :

\(9x^2-6x+3\)

\(=\left(9x^2-6x+1\right)+2\)

\(=\left(3x-1\right)^2+2\)

Mà \(\left(3x-1\right)^2\ge0\forall x\in R\)

\(\Rightarrow\left(3x-1\right)^2+2\ge2>0\forall x\in R\)

Vậy \(9x^2-6x+3>0\forall x\in R\)

30 tháng 10 2018

Mong mọi người giúp với, mình đang cần gấp!!! Thanks

30 tháng 10 2018

a) (x+3)^2-(x-5)(x+5)-6x

= x^2+6x+9-x^2+25-6x

= 9+25

= 94

vậy...

5 tháng 12 2017

Ta có:

\(9x^2+6x+2\)

\(=\left(3x\right)^2+2.3x+1+1\)

\(=\left(3x+1\right)^2+1\ge1\)

Vì: 1 > 0

Do đó : \(\left(3x+1\right)^2+1>0\) với mọi x

Vậy \(9x^2+6x+2>0\) với mọi x

a) Ta có: \(x^2+4x+4=x^2-6x+9\)

\(\Leftrightarrow4x+4=-6x+9\)

\(\Leftrightarrow4x+6x=9-4\)

\(\Leftrightarrow10x=5\)

hay \(x=\dfrac{1}{2}\)

b) Ta có: \(B=-x^2+2x-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1\right)-1\)

\(=-\left(x-1\right)^2-1< 0\forall x\)

5 tháng 7 2021

Bài 1: 

\(pt\Leftrightarrow10x=5\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(S=\left\{\dfrac{1}{2}\right\}\)

Bài 2:

\(B=x^2+2x-2\) 

Lấy \(x=1\Rightarrow B=1>0\)

Vậy \(B=x^2+2x-2< 0\forall x\in R\) ( vô lí)

6 tháng 11 2019

a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)

b) \(x-x^2-3=-\left(x^2-x+3\right)\)

\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)

\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)

24 tháng 8

x²-2x+2=(x²-2x+1)+1=( x-1)²+1

Mà (x-1)²≥0 với mọi x

=> (x-1)²+1>0 với mọi x

=> x²-2x+2>0 với mọi x

18 tháng 8 2018

Ta có:  x 2  – 6x + 10 =  x 2  – 2.x.3 + 9 + 1 = x - 3 2  + 1

Vì  x - 3 2  ≥ 0 với mọi x nên  x - 3 2  + 1 > 0 mọi x

Vậy  x 2  – 6x + 10 > 0 với mọi x.(đpcm)

11 tháng 8 2015

x^2-6x+10

=x^2-6x+9+1

=x^2-6x+3^2+1

=(x-3)^2+1

ta có: (x-3)^2 >hoặc = 0 với mọi x

=>(x-3)^2+1>hoặc =0+1 >0 với mọi x

chắc chắn đúng luôn nhớ li-ke cho minh nha

11 tháng 8 2015

\(x^2-6x+10=x^2-6x+9+1=\left(x+3\right)^2+1\)

Vì \(\left(x-3\right)^2\ge0\) => \(\left(x-3\right)^2+1>0\)  với mọi x 

=> \(x^2-6x+10>0\)  (ĐPCM)

 

 

15 tháng 8 2016

a)x2-6x+10

      Ta có:x2-6x+10=x2-2.3x+9+1

                               =(x-3)2+1

            Vì (x-3)2\(\ge\)0

 Suy ra:(x-3)2+1\(\ge\)1(đpcm)

b)4x-x2-5

      Ta có:4x-x2-5=-(x2-4x+5)

                           =-(x2-2.2x+4)-1

                           =-1-(x-2)2

              Vì -(x-2)2\(\le\)0

Suy ra:-1-(x-2)2\(\le\)-1(đpcm)

 

15 tháng 8 2016

a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1>0\) với mọi x

b) \(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\) với mọi x

28 tháng 6 2019

a) \(x^2-6x+10=x^2-2.3x+3^2+1=\left(x-3\right)^2+1\)

Mà \(\left(x-3\right)^2\ge0\) nên \(\left(x-3\right)^2+1>0\)

hay \(x^2-6x+10>0\left(đpcm\right)\)

b) \(4x-x^2-5=-\left(x^2-4x\right)-5=-\left(x^2-4x+4\right)+4-5\)

\(=-\left(x-2\right)^2-1\)

Vì \(-\left(x-2\right)^2\le0\forall x\)nên \(-\left(x-2\right)^2-1< 0\)

hay \(4x-x^2-5< 0\left(đpcm\right)\)

28 tháng 6 2019

a) Ta có:

\(x^2-6x+10=x^2-6x+9+1\) 1

\(=\left(x-3\right)^2+1\) 

vì \(\left(x-3\right)^2\ge0\forall x\in R\) ;1>0

\(\Rightarrow\left(x-3\right)^2+1\ge1\forall x\in R\) 

=>đpcm

b)

\(4x-x^2-5=-\left(x^2-4x+4\right)-1\) 

\(=-\left(x-2\right)^2-1\) 

vì:\(-\left(x-2\right)^2\le0\forall x\in R\) ;-1<0

=>..........

vậy...

hc tốt

15 tháng 7 2016

chứng tỏ rằng: 

4x-x^2-5<0 với mọi x

15 tháng 7 2016

\(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1>0\)