Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Gọi d là ƯC ( 15n + 1 ; 30n + 1 )
=> 15n + 1 ⋮ d => 2.( 15n + 1 ) ⋮ d => 30n + 2 ⋮ d
=> 30n + 1 ⋮ d => 1.( 30n + 1 ) ⋮ d => 30n + 1 ⋮ d
=> [ ( 30n + 2 ) - ( 30n + 1 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC ( 15n + 1 ; 30n + 1 ) = 1 nên 15n+1/30n+1 là p/s tối giản
a)Gọi ước chung lớn nhất của 15n + 1 và 30n + 1 là d (d thuộc N*)
=> 15n + 1 chia hết cho d
30n + 1 chia hết cho d
=> 2(15n + 1) chia hết cho d
1(30n + 1) chia hết cho d
=> 30n + 2 chia hết cho d
30n + 1 chia hết cho d
=>(30n + 2) - (30n + 1) chia hết cho d
=> 1 chia hết cho d
Do d thuộc N*
=> d=1
=>Ước chung lớn nhất của 15n + 1 và 30n + 1 là 1
=> 15n +1 và 30n + 1 là 2 số nguyên tố cùng nhau
=>15n + 1/30n + 1 là phân số tối giản với n thuộc N (điều phải chứng minh)
Cho mình 5* pn nké.Hì.Thân.Chúc học giỏi
a) Gọi ƯC(2n+1,4n+6) = d ( d thuộc Z)
Suy ra 2n+1 chia hết cho d
4n+6 chia hết cho d
Suy ra 2(2n+1) chia hết cho d hay 4n+ 2 chia hết cho d
Suy ra 4n+ 6 - 4n - 2 chia hết cho d hay 4 chia hết cho d
Suy ra d thuộc {1;-1;2-2;4;-4}
Mà 2n + 1 không chia hết cho 2 và -2 nên d khác 2 và -2
4n+6 không chia hết cho 4 và -4 nên d khác 4 và -4
Suy ra d chỉ có thể là 1 và -1
Vậy 2n+1/4n+6 là phân số tối giản với mọi n
b)CÓ LẼ SAI ĐẦU BÀI
a) Đặt \(d=\left(15n+1,30n+1\right)\).
Suy ra \(\hept{\begin{cases}15n+1⋮d\\30n+1⋮d\end{cases}}\Rightarrow2\left(15n+1\right)-\left(30n+1\right)=1⋮d\Rightarrow d=1\).
Ta có đpcm.
b) Đặt \(d=\left(n^3+2n,n^4+3n^2+1\right)\).
Suy ra \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\Rightarrow\left(n^4+3n^2+1\right)-n\left(n^3+2n\right)=n^2+1⋮d\)
\(\Rightarrow\left(n^4+3n^2+1\right)-n^2\left(n^2+1\right)-2\left(n^2+1\right)=-1⋮d\)
Suy ra \(d=1\).
Suy ra đpcm.
a) Đặt ( 15n+1 ; 30n+1 )=d
=>15n+1 chia hết cho d =>30n+2 chia hết cho d
30n+2 chia hết cho d
=>30n+2-30n-1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>15n+1 và 30n+1 nguyên tố cùng nhau
=>\(\frac{15n+1}{30n+1}\) tối giản
b)Đặt ( 2n+3;4n+8)=d
=>2n+3 chia hết cho d=>4n+6 chia hết cho d
4n+8 chia hết cho d
=>4n+8-4n-6 chia hết cho d
=>2 chia hết cho d
=>d= 1 hoặc 2
Mà 2n+3 là số lẻ
=>d khác 2
=>d=1
=>2n+3 và 4n+8 nguyên tố cùng nhau
=>\(\frac{2n+3}{4n+8}\) tối giản
k cho mk nhé
Chú ý rằng, phân số tối giản là phân số mà tử và mẫu chỉ có ước chung là ±1.
a) Gọi d là ước chung của n + 7 và n + 6. Ta chứng minh d = ±1 bằng cách xét hiệu (n + 7) - (n + 6) chia hết cho d.
b) Gọi d là ước chung của 3n + 2 và n +1. Ta chứng minh d = ±1 bằng cách xét hiệu (3n + 2) - 3.(n +1) chia hết cho d.
2n+1chia hết cho d ; 4n+6 chia hết cho d suy ra 2n+3 chia hết cho d
suy ra (2n+3)-(2n+1) chia hết cho d suy ra 2 chia hết cho d hay d thuộc U(2)={2;-2;1;-1}
vì 2n+1 là số lẻ nên d={1;-1}
suy ra 2n+1phần 4n+6 là phân số tối giản
2n+1chia hết cho d ; 4n+6 chia hết cho d suy ra 2n+3 chia hết cho d
suy ra (2n+3)-(2n+1) chia hết cho d suy ra 2 chia hết cho d hay d thuộc U(2)
={2;-2;1;-1}
vì 2n+1 là số lẻ nên d={1;-1}
suy ra 2n+1phần 4n+6 là phân số tối giản
a)
Gọi d là ước chung của 15n + 1 và 30n + 1 \(\left(d\in N\right)\)
\(\Rightarrow\left\{{}\begin{matrix}15n+1⋮d\Rightarrow2\left(15n+1\right)⋮d\Rightarrow30n+2⋮d\\30n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left(30n+2\right)-\left(30n+1\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\)15n + 1 và 30n + 1 nguyên tố cùng nhau
\(\Rightarrow\dfrac{15n+1}{30n+1}\) tối giản
Để 12n+1/30n+2 là phân số tối giản thì 12n+1 và 30n+2 phải có ƯCLN bằng 1
Gọi d là ƯCLN của 12n+1 và 30n+2
12n+1 chia hết cho d
30n+2 chia hết cho d
suy ra (30n+2 )-(12n+1) chia hết cho d
= 30n+2-12n-1 chia hết cho d
=(30n-12n) + (2-1)chia hết cho d
=8n+1
8n chia hết cho d , 1 chia hết cho d
suy ra n= 8n thì 12n+1/30n+2laf p/s tối giản
Gọi d là ƯCLN(12n + 1; 30n + 2)
Khi đó : 12n + 1 chia hết cho d và 30n + 2 chia hết cho d
<=> 60n + 5 chia hết cho d và 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d => 1 chia hết cho d => d = 1
Vì ƯCLN(12n + 1; 30n + 2) = 1 => 12n + 1/60n + 2 là p/s tối giản