K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2017

vì tập hợp n có vô hạn phần tử mà sau dấu ,là các số thuộc tập hợp N nên đó là số vô tỉ

26 tháng 7 2019

Giả sử, a không phải là 1 số vô tỉ. Khi đó a là một số thập phân vô hạn tuần hoàn mà chu kì có n chữ số, số các chữ số đứng trước chu kì bằng k. Xét số N = 10^m với m là 1 số tự nhiên và \(m\ge n+k\). Trong số a, sau dấu phẩy, ta viết kế tiếp nhau các số tự nhiên kể từ 1, do đó số N cũng được viết ở một vị trí nào đó. Vì a là số thập phân vô hạn tuần hoàn và vì m là chữ số 0 đứng cạnh nhau ở vị trí nào đó trong số a \(\left(m\ge n+k\right)\)nên chu kì của số thập phân này chỉ gồm toàn chữ số 0, nghĩa là a là số thập phân hữu hạn. Điều này mâu thuẫn với đề bài. Vì vậy số a không thể là một số thập phân vô hạn tuần hoàn. Nó là một số thập phân vô hạn không tuần hoàn nghĩa là a là một số vô tỉ.

26 tháng 7 2019

#)Giải :

Giả sử a là số vô tỉ với chu kì = k

Xét A = 10m với m là số tự nhiên 

Vì số a sau dấu phẩy là các số tự nhiên liên tiếp viết từ 1

=> Số A cũng sẽ nằm ở một vị trí nào đó

Vì a là lũy thừa của 10m hay m số 0 

=> a là số hữu hạn (mâu thuẫn với đề bài)

=> a là số thập phân vô hạn không tuần hoàn hay số vô tỉ (đpcm)

21 tháng 10 2021

A

21 tháng 10 2021

A

22 tháng 10 2019

giả sử \(\sqrt{2}\)là số hữu tỉ nên \(\sqrt{2}=\frac{a}{b}\)(với a;b có ước chung lớn nhất là 1)

bình phương 2 vế ta được a2 =2b2 => a2 chia hết cho 2 => a2 chia hết cho 4 => a2 = 4m (m\(\in N\)*) = 2b2 

=> b2 =2m => b2 chia hết cho 2 => b chia hết cho  2 => a và b có ước chung lớn nhất khác 1( vô lý)

vậy \(\sqrt{2}\)là số vô tỉ

làm tương tư với các số còn lại

30 tháng 5 2016

Đặt: \(\sqrt{2}=\frac{m}{n}\)

=> \(\frac{m^2}{n^2}=2\)

=> \(m^2=2n^2\)

=> \(m^2\) chia hết cho \(2\). Mà 2 là số nguyên tố nên => \(m\) chia hét cho 2

Đặt: \(m=2k\)

=> \(\frac{m^2}{n^2}=\frac{4k^2}{n^2}=2\)

=> \(4k^2=2n^2\)

=> \(n^2=2k^2\)

=> \(n^2\) chia hết cho 2. Mà 2 là số nguyên tố nên n chia hết cho 2.

Ta có \(\sqrt{2}=\frac{m}{n}=\frac{2a}{2b}\) không tối giản nên \(\sqrt{2}\) là số vo tỉ.

Các câu sau tương tự

30 tháng 5 2016

Mình dùng phương pháp phản chứng hơi tắt một tí.

Giả sử \(\sqrt{2}\) là số hữu tỉ thì sẽ có dạng \(\sqrt{2}=\frac{m}{n}\) tối giản.

Mình chứng minh \(\frac{m}{n}\) không tối giản nên \(\sqrt{2}\) là số vô tỉ