Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình mẫu đầu với cuối nhé:
a) Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow3⋮d\)
\(\Rightarrow d\in\left\{1,3\right\}\)
Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)
Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.
e) \(ƯCLN\left(2n+3,3n+5\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.
Gọi d=ƯCLN(2n+1;2n^2-1)
=>2n+1 chia hết cho d và 2n^2-1 chia hết cho d
=>2n^2+n chia hết cho d và 2n^2-1 chia hết cho d
=>n+1 chia hết cho d và 2n+1 chia hết cho d
=>2n+2 chia hết cho d và 2n+1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+1 và 2n^2-1 là hai số nguyên tố cùng nhau
Gọi d = ƯCLN(2n + 1; 2n + 3) (d thuộc N*)
=> 2n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 1) chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 2 chia hết cho d
Mà 2n + 1 lẻ => d lẻ => d = 1
=> ƯCLN(2n + 1; 2n + 3) = 1
Chứng tỏ ...
Chứng tỏ rằng (2n+1) và (2n+3) là cặp số nguyên tố cùng nhau với mọi số tự nhiên n.
Gọi d = ƯCLN(2n + 1; 2n + 3) (d thuộc N*)
=> 2n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2 chia hết cho d
Mà 2n + 1 lẻ => d lẻ => d = 1
=> ƯCLN(2n + 1; 2n + 3) = 1
CHứng tỏ
a: Gọi d=ƯCLN(n+3;n+2)
=>n+3-n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>n+2 và n+3 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(2n+3;3n+5)
=>6n+9-6n-10 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>2n+3 và 3n+5là hai số nguyên tố cùng nhau
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Gọi ƯCLN(2n+3;n+2)=d
Ta có: 2n+3 chia hết cho d;n+2 chia hết cho d
=>2n+3 chia hết cho d; 2(n+2)chia hết cho d
=> 2n+3 chia hết cho d;2n+4 chia hết cho d
=>[2n+4-(2n+3)]chia hết cho d
=>2n+4-2n-3 chia hết cho d
=>1 chia hết cho d hay d=1=> ƯCLN(2n+3;n+2)=1
Vậy với mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là số nguyên tố cùng nhau
Gọi ƯCLN(2n+3;n+2)=d
Ta có: 2n+3 chia hết cho d;n+2 chia hết cho d
=>2n+3 chia hết cho d; 2(n+2)chia hết cho d
=> 2n+3 chia hết cho d;2n+4 chia hết cho d
=>[2n+4-(2n+3)]chia hết cho d
=>2n+4-2n-3 chia hết cho d
=>1 chia hết cho d hay d=1=> ƯCLN(2n+3;n+2)=1
Vậy với mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là số nguyên tố cùng nhau
Chúc bạn học tốt!^_^
Gọi UCLN 2n + 3, n + 2 là d, khi đó:
\(\hept{\begin{cases}2n+3⋮d\\2\left(n+2\right)⋮d\end{cases}\Rightarrow2n+4-2n-3⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\) do n là số tự nhiên
Vậy (2n + 3,n + 2) = 1 (đpcm)
Gọi ƯCLN(2n+3;n+2)=d
Ta có: 2n+3 chia hết cho d;n+2 chia hết cho d
=>2n+3 chia hết cho d; 2(n+2)chia hết cho d
=> 2n+3 chia hết cho d;2n+4 chia hết cho d
=>[2n+4-(2n+3)]chia hết cho d
=>2n+4-2n-3 chia hết cho d
=>1 chia hết cho d hay d=1=> ƯCLN(2n+3;n+2)=1
Vậy với mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là số nguyên tố cùng nhau
Chúc bạn học tốt!^_^
Vì 2n+1 và 2n+3 là số lẻ nên \(\left\{{}\begin{matrix}2n+1⋮̸2\\2n+3⋮̸2\end{matrix}\right.\)(1)
Gọi d là ƯCLN(2n+1,2n+3)(2)
⇔\(\left\{{}\begin{matrix}2n+1⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow2n+1-2n-3⋮d\Leftrightarrow-2⋮d\)(3)
Từ (1) và (2) suy ra \(d\notin\left\{2;-2\right\}\)
Từ (3) suy ra \(d\inƯ\left(-2\right)\)
\(\Leftrightarrow d\in\left\{1;-1;2;-2\right\}\)
mà \(d\notin\left\{2;-2\right\}\)
nên d=1
hay ƯCLN(2n+1;2n+3)=1
⇔2n+1 và 2n+3 là hai số nguyên tố cùng nhau(đpcm)
Gọi d = ƯCLN(2n + 1; 2n + 3) (d ϵ N* )
→ 2n + 1 ⋮ d, 2n + 3 ⋮ d
→ (2n + 1) - (2n + 3) ⋮ d
→ 2 ⋮ d
→ d ϵ Ư(2) = {1,2}
Mà, 2n + 3 là số lẻ
→ d = 1
Vậy, 2n + 1 và 2n + 3 nguyên tố với nhau với mọi số tự nhiên n