K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2021

\(a,S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\\ S=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{18}\left(3+3^2\right)\\ S=\left(3+3^2\right)\left(1+3^2+...+3^{18}\right)=12\left(1+3^2+...+3^{18}\right)⋮12\)

\(b,S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\\ S=\left(3+3^2+3^3+3^4\right)+....+3^{16}\left(3+3^2+3^3+3^4\right)\\ S=\left(3+3^2+3^3+3^4\right)\left(1+...+3^{16}\right)\\ S=120\left(1+...+3^{16}\right)⋮120\)

9 tháng 12 2021

\(a,S=3+3^2+3^3+...+3^{20}\)

Ta thấy:\(3+3^2=12⋮12\)

\(\Rightarrow S=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{18}\left(3+3^2\right)\\ \Rightarrow S=\left(3+3^2\right)\left(1+3^2+...+1^{18}\right)\\ \Rightarrow S=12.\left(1+3^2+...+3^{18}\right)⋮12\\ \left(đpcm\right)\)

\(b,Ta\) \(thấy:\)\(3+3^2+3^3+3^4=120⋮120\)

\(\Rightarrow S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\\ \Rightarrow S=\left(3+3^2+3^3+3^4\right)+...+3^{16}\left(3+3^2+3^3+3^4\right)\\ \Rightarrow S=\left(3+3^2+3^3+3^4\right)\left(1+...+3^{16}\right)\\ \Rightarrow S=120\left(1+...+3^{16}\right)⋮120\\ \left(đpcm\right)\)

26 tháng 11 2017

50+51+52+53+...+52010+52011

= 1+5+52+53+...+52010+52011

=(1+5)+(52+53)+...+(52010+52011)

= (1+5)+52(1+5)+...+52010(1+5)

= (1+5)(1+52+...+52010)

= 6.(1+52+...+52010) chia hết cho 6

=> đpcm

15 tháng 11 2018

b}B={1+5}+{5 mũ 2 + 5 mũ 3}+....+{5 mũ 20+5 mũ 21}

      =1+{1+5}+5 mũ 2+{1+5}+....+5 mũ 20+{1+5}

      =1+6+5 mũ 2+6+...+5 mũ 20+6 luôn chia hết cho 6  

Vậy B chia hết cho 6

Câu c tương tự nha

Những chỗ mình viết ngoặc nhọn ý thật ra nó là ngoặc tròn đấy nhé

                                                                                   K CHO MÌNH NHÉ

30 tháng 4 2018

Câu a) Dễ mà

Câu b) Hiệu hai số nguyên tố k thể là 2013. Vì

Giả sử có hai số nguyên tố \(a-b=2013\)

Suy ra: a,b là số lẻ (Không đc vì a-b phải là số chẵn)

Hoặc: \(\orbr{\begin{cases}a=2\\b=2\end{cases}\Rightarrow\orbr{\begin{cases}b=2015\\a=2015\end{cases}}}\)(không thỏa vì 2015 không phải là số nguyên tố)

Suy ra phản giả thiết

Vậy không tồn tại hai số nguyên tố sao cho tổng = 2013

30 tháng 4 2018

a) Ta xét:S=3+3^(2+1)+3^(2+3)+...+3^(2+1009)+3^(2+1011)+3^(2+1013)

S=3+9(3+3^3+...+3^1009+3^1011+3^1013) ko chia hết cho 9

s ko chia het 70 minh ko bit

b) gọi 2 số nguyên tố là a,b  Giả sử:a-b=2013

vì 2013 là số lẻ => 1 trong 2 số a,b là chẵn mà a,b nguyên  tố => 1 trong 2 số a,b =2

Nếu a=2=>2-b=2013=>b=-2011ko là số nguyên tố

Nếu b=2 => a-2=2013 => a= 2015 ko số nguyên tô

Do vậy giả sử sai=> hiệu 2 số nguyên tố ko bằng 2013

10 tháng 11 2016

5+5^2+..+5^98=

(5+5^2+5^3+5^4+5^5+5^6)+..+(5^93+5^94+5^95+5^96+5^97+8^98)chia het cho 126

mấy bài còn lại cung tương tự 

kmình nhé

10 tháng 11 2016

Mình đã giải đc rồi!!!

10 tháng 1 2020

Gọi k là thương khi a chia cho 3
Ta có a=3k+2
=> a \in {5;8;11;14;...}
p là thương khi a chia cho 5.
Ta có a=5k+3
=> a \in { 8;13;18;23;...}
Vậy a là 8