Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(B=1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-\dfrac{1}{4^2}-...........-\dfrac{1}{2004^2}\)
\(\Leftrightarrow B=1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+..............+\dfrac{1}{2004^2}\right)\)
Đặt :
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+.............+\dfrac{1}{2004^2}\)
Ta thấy :
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
..........................
\(\dfrac{1}{2004^2}< \dfrac{1}{2003.2004}\)
\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+..............+\dfrac{1}{2003.2004}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{2003}-\dfrac{1}{2004}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2004}\)
\(\Leftrightarrow A< \dfrac{2003}{2004}\)
\(\Leftrightarrow1-A< 1-\dfrac{2003}{2004}\)
\(\Leftrightarrow B< \dfrac{1}{2004}\left(đpcm\right)\)
b) \(S=\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-........+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+.......+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\)
\(\Leftrightarrow2^2S=2^2\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+.....+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+....+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)
\(\Leftrightarrow4S=1-\dfrac{1}{2^2}+.......+\dfrac{1}{2^{4n}}-\dfrac{1}{2^{4n+2}}+.......+\dfrac{1}{2^{2000}}-\dfrac{1}{2^{2002}}\)
\(\Leftrightarrow4S+S=\left(1-\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2000}}-\dfrac{1}{2^{2002}}\right)+\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+.......+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)\(\Leftrightarrow5S=1-\dfrac{1}{2^{2004}}< 1\)
\(\Leftrightarrow S< \dfrac{1}{5}=0,2\)
\(\Leftrightarrow S< 0,2\left(đpcm\right)\)
cho mik hỏi mik ko hiểu tại sao từ 1/2^4n-2 khi nhân với 2^2 lại ra đc 1/2^4n vậy? Xin hãy giải đáp giùm mik
Chữa lại đề.Bạn xem lại đề xem đúng chưa nhé!
\(D=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}+\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}+\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}+\dfrac{3}{2004}}\)
\(D=\dfrac{1.\left(\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}\right)}{5.\left(\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}\right)}-\dfrac{2.\left(\dfrac{1}{2002}+\dfrac{1}{2003}+\dfrac{1}{2004}\right)}{3\left(\dfrac{1}{2002}+\dfrac{1}{2003}+\dfrac{1}{2004}\right)}\)
\(D=\dfrac{1}{5}-\dfrac{2}{3}\)
\(D=-\dfrac{7}{15}\)
Cái này học lâu rồi.Bạn xem lại xem mình làm đúng chưa nhé!
Tao có: \(B=1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-\dfrac{1}{4^2}-...-\dfrac{1}{2004^2}\)
\(B>1-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2003\cdot2004}\right)\)
\(B>1-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2003}-\dfrac{1}{2004}\right)\)
\(B>1-\left(1-\dfrac{1}{2004}\right)=1-1+\dfrac{1}{2004}=\dfrac{1}{2004}\left(đpcm\right)\)
8,A=\(\dfrac{9}{10}-\left(\dfrac{1}{10\times9}+\dfrac{1}{9\times8}+\dfrac{1}{8\times7}+...+\dfrac{1}{2\times1}\right)\)
=\(\dfrac{9}{10}-\left(\dfrac{1}{10}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{8}+...+\dfrac{1}{2}-1\right)\)
=\(\dfrac{9}{10}-\left(\dfrac{1}{10}-1\right)\)
=\(\dfrac{9}{10}-\dfrac{\left(-9\right)}{10}\)
=\(\dfrac{9}{5}\)
Ta có:
\(B=1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-........-\dfrac{1}{2004^2}.\)
\(B=1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+........+\dfrac{1}{2004^2}\right).\)
Đặt \(M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+........+\dfrac{1}{2004^2}.\)
Ta thấy:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}.\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}.\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}.\)
..................
\(\dfrac{1}{2004^2}< \dfrac{1}{2003.2004}.\)
\(\Rightarrow M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+........+\dfrac{1}{2004^2}.\)
\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+........+\dfrac{1}{2003.2004}.\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+........+\dfrac{1}{2003}-\dfrac{1}{2004}.\)
\(=\dfrac{1}{1}-\dfrac{1}{2004}.\)
\(=\dfrac{2003}{2004}.\)
\(\Rightarrow M< \dfrac{2003}{2004}.\)
\(\Rightarrow1-M>1-\dfrac{2003}{2004}.\)
\(\Rightarrow B>\dfrac{1}{2004}\) (do B = 1 - M).
\(\Rightarrowđpcm.\)
\(B=1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-\dfrac{1}{4^2}-...........-\dfrac{1}{2004^2}\)
\(\Leftrightarrow B=1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...........+\dfrac{1}{2004^2}\right)\)
Đặt :
\(H=\dfrac{1}{2^2}+\dfrac{1}{3^2}+.........+\dfrac{1}{2004^2}\)
Ta có :
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
.......................
\(\dfrac{1}{2004^2}< \dfrac{1}{2003.2004}\)
\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+........+\dfrac{1}{2003.2004}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.......+\dfrac{1}{2003}-\dfrac{1}{2004}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2004}\)
\(\Leftrightarrow A< \dfrac{2003}{2004}\)
\(\Leftrightarrow1-A< 1-\dfrac{2003}{2004}\)
\(\Leftrightarrow B< \dfrac{1}{2004}\left(đpcm\right)\)
Sửa đề:
CMR: \(1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-...-\dfrac{1}{2004^2}>\dfrac{1}{2004}\)
Giải:
Ta có:
\(1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-\dfrac{1}{4^2}-...-\dfrac{1}{2004^2}\)
\(=1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2014^2}\right)\)
Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2004^2}\)
Dễ thấy:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)
\(.............................\)
\(\dfrac{1}{2004^2}=\dfrac{1}{2004.2004}>\dfrac{1}{2004.2005}\)
Cộng các vế trên với nhau ta được:
\(A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2004.2005}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2004}-\dfrac{1}{2005}\)
\(\Rightarrow A< \dfrac{1}{2}-\dfrac{1}{2005}=2\)
Chết!
\(\Rightarrow A< \dfrac{1}{2}-\dfrac{1}{2005}=\dfrac{2003}{4010}\)
Còn lại tự giải thôi! Dễ rồi
\(A< \dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{2003.2004}\)
\(\Rightarrow A< \dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{2003}-\dfrac{1}{2004}\)
\(\Rightarrow A< \dfrac{1}{4}-\dfrac{1}{2004}< \dfrac{1}{4}\)
Đồng thời:
\(A>\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{2004.2005}\)
\(A>\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{2004}-\dfrac{1}{2005}\)
\(A>\dfrac{1}{5}-\dfrac{1}{2005}=\dfrac{80}{401}>\dfrac{50}{500}>\dfrac{1}{10}>\dfrac{1}{65}\)
Vậy \(\dfrac{1}{65}< A< \dfrac{1}{4}\)
Đặt \(A=1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-\dfrac{1}{4^2}-...-\dfrac{1}{2004^2}\)
\(A=1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2004^2}\right)\)
Đặt \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2004^2}\)
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2004^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{2003\cdot2004}\)
\(B< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2003}-\dfrac{1}{2004}\)
\(B< 1-\dfrac{1}{2004}\)
\(\Rightarrow B< \dfrac{2003}{2004}\)
\(\Rightarrow1-B>1-\dfrac{2003}{2004}\)
\(\Rightarrow A>\dfrac{1}{2004}\left(đpcm\right)\)