Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu:
(a + b + c)(x + y + z) - 3(ax + by + cz)
= a(x + y + z) - 3ax + b(x + y + z) - 3by + c(x + y + z) - 3cz
= a(x + y + z - 3x) + b(x + y + z - 3y) + c(x + y + z - 3z)
= a(y + z - 2x) + b(x + z - 2y) + c(x + y - 2z)
= a[(y - x) - (x - z)] + b[(z - y) - (y - x)] + c[(x - z) - (z - y)]
= (y - x)(a - b) + (x - z)(c - a) + (z - y)(b - c) \(\ge0\)
do \(a\ge b\ge c\) và \(x\le y\le z\)
\(\Rightarrow\left(a+b+c\right)\left(x+y+z\right)\ge3\left(ax+by+cz\right)\left(đpcm\right)\)
Ta có: \(bc(y-z)^{2}+ac(x-z)^{2}+ab(x-y)^{2}\)
\(=(abx^2+cax^2)+(bcy^2+aby^2)+(caz^2+bcz^2)-2(ax.by+by.cz+cz.ax)\)
\(=ax^2(2017-a)+by^2(2017-b)+cz^2(2017-c)-2(ax.by+by.cz+cz.ax)\)
\(=2017(ax^2+by^2+cz^2)-[a^2x^2+b^2y^2+c^2z^2+2(ax.by+by.cz+cz.ax)]\)
\(=2017(ax^2+by^2+cz^2)-(ax+by+cz)^2\)
\(=2017(ax^2+by^2+cz^2)\)
Vậy \(P=\dfrac{1}{2017}\)
bài của bạn Phạm Quốc Cường phải là 2007 chứ không phải 2017
Đặt B là mẫu thức của P thì :
B = ab(x - y)2 + bc(y - z)2 + ca(z - x)2 = abx2 - 2abxy + aby2 + bcy2 - 2bcyz + bcz2 + caz2 - 2cazx + cax2
= ax2(b + c) + by2(a + c) + cz2(a + b) - 2(bcyz + acxz + abxy) (1)
ax + by + cz = 0 => (ax + by + cz)2 = 0 <=> a2x2 + b2y2 + c2z2 + 2(bcyz + acxz + abxy) = 0
=> -2(bcyz + acxz + abxy) = a2x2 + b2y2 + c2z2 (2)
Từ (1) và (2),ta có : B = ax2(b + c) + by2(a + c) + cz2(a + b) + a2x2 + b2y2 + c2z2
= ax2(a + b + c) + by2(a + b + c) + cz2(a + b + c) = (a + b + c)(ax2 + by2 + cz2)
\(\Rightarrow P=\frac{1}{a+b+c}=2017\)
\(ax+by+cz=0\Rightarrow\left(ax+by+cz\right)^2=0\)
\(\Rightarrow a^2x^2+b^2y^2+c^2z^2=-2\left(axby+bycz+axcz\right)\)
Ta co
\(\dfrac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(z-x\right)^2+ab\left(x-y\right)^2}\)
\(=\dfrac{ax^2+by^2+cz^2}{bcy^2-2bcyz+bcz^2+acz^2-2aczx+acx^2+abx^2-2abxy+aby^2}\)
\(=\dfrac{ax^2+by^2+cz^2}{bcy^2+bcz^2+acz^2+acx^2+abx^2+aby^2-2\left(axby+bcyz+axcz\right)}\)
\(=\dfrac{ax^2+by^2+cz^2}{bcy^2+bcz^2+acz^2+acx^2+abx^2+aby^2+a^2x^2+b^2y^2+c^2z^2}\)
\(=\dfrac{ax^2+by^2+cz^2}{\left(acx^2+abx^2+a^2x^2\right)+\left(bcy^2+aby^2+b^2y^2\right)+\left(c^2z^2+acz^2+bcz^2\right)}\)
\(=\dfrac{ax^2+by^2+cz^2}{ax^2\left(a+b+c\right)+by^2\left(a+b+c\right)+cz^2\left(a+b+c\right)}\)
\(=\dfrac{ax^2+by^2+cz^2}{\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)}=\dfrac{1}{a+b+c}\) ( dpcm)
http://olm.vn/hoi-dap/question/58264.html?auto=1
vào đây thAM khảo nhé.
cách nhanh nhất là nhân tung ra rồi chuyển vế rút gọn là xong