K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

Đặt \(a=\dfrac{kx}{y};b=\dfrac{ky}{z};c=\dfrac{kz}{x}\Rightarrow abc=k^3\)

Ta có: \(BDT\Leftrightarrow\dfrac{yz}{kx\left(ky+z\right)}+\dfrac{xz}{ky\left(kz+x\right)}+\dfrac{xy}{kz\left(kx+y\right)}\ge\dfrac{3}{1+k^3}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT=\dfrac{y^2z^2}{kxyz\left(ky+z\right)}+\dfrac{x^2z^2}{kxyz\left(kz+x\right)}+\dfrac{x^2y^2}{kxyz\left(kx+y\right)}\)

\(\ge\dfrac{\left(xy+yz+xz\right)^2}{xyz\left(x+y+z\right)k\left(k+1\right)}\ge\dfrac{3xyz\left(x+y+z\right)}{xyz\left(x+y+z\right)k\left(k+1\right)}=\dfrac{3}{k\left(k+1\right)}\)

Cần chứng minh \(\dfrac{3}{k\left(k+1\right)}\ge\dfrac{3}{1+k^3}\)

\(\Leftrightarrow\dfrac{3\left(k-1\right)^2}{k\left(k+1\right)\left(k^2-k+1\right)}\ge0\) (luôn đúng)

22 tháng 5 2018

cho hỏi sao lại đặt như vậy? bí quyết???

AH
Akai Haruma
Giáo viên
29 tháng 9 2017

Lời giải:

Áp dụng hệ quả của BĐT AM-GM:

\(\text{VT}^2=\left[\frac{1}{a(a+1)}+\frac{1}{b(b+1)}+\frac{1}{c(c+1)}\right]^2\geq 3\left(\frac{1}{ab(a+1)(b+1)}+\frac{1}{bc(b+1)(c+1)}+\frac{1}{ca(a+1)(c+1)}\right)\)

\(\Leftrightarrow \text{VT}^2\geq 3.\frac{a^2+b^2+c^2+a+b+c}{abc(a+1)(b+1)(c+1)}\geq 3.\frac{a+b+c+ab+bc+ac}{abc(a+1)(b+1)(c+1)}\)

\(\Leftrightarrow \text{VT}^2\geq \frac{3}{abc}-\frac{3(abc+1)}{abc(a+1)(b+1)(c+1)}\) \((1)\)

Ta sẽ cm \((a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3\). Thật vậy:

Áp dụng BĐT AM-GM:

\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}\)

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}\)

Cộng theo vế: \(\Rightarrow 3\geq \frac{3(\sqrt[3]{abc}+1)}{\sqrt[3]{(a+1)(b+1)(c+1)}}\)

\(\Rightarrow (a+1)(b+1)(c+1)\geq (\sqrt[3]{abc}+1)^3\) (2)

Từ \((1),(2)\Rightarrow \text{VT}^2\geq \frac{3}{abc}-\frac{3(abc+1)}{abc(1+\sqrt[3]{abc})^3}=\frac{9}{\sqrt[3]{a^2b^2c^2}(1+\sqrt[3]{abc})^2}=\text{VP}^2\)

\(\Leftrightarrow \text{VT}\geq \text{VP}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)

28 tháng 9 2017

ap dung bdt holder

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 1:

Áp dụng BĐT AM-GM ta có:

$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$

$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$

Cộng theo vế và thu gọn:

$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$

$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 2:

$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$

$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$

$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$

Cộng theo vế và rút gọn thu được:

$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$ 

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$

18 tháng 6 2023

Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) khi đó thu được \(xyz=1\)

Ta có:

\(\dfrac{1}{a^2\left(b+c\right)}=\dfrac{x^2}{\dfrac{1}{y}+\dfrac{1}{z}}=\dfrac{x^2yz}{y+z}=\dfrac{x}{y+z}\)

BĐT cần chứng minh được viết lại thành:\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\left(\dfrac{x}{y+z}+1\right)+\left(\dfrac{y}{z+x}+1\right)+\left(\dfrac{z}{x+y}+1\right)\ge\dfrac{9}{2}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\dfrac{1}{y+z}+\dfrac{1}{z+x}+\dfrac{1}{x+y}\right)\ge\dfrac{9}{2}\)

Đánh giá cuối cùng đúng theo BĐT Cauchy

Vậy BĐT được chứng minh. Đẳng thức xảy ra khi và chỉ khi  a = b = c = 1.

18 tháng 6 2023

Cảm ơn bạn nhé!

13 tháng 2 2019

Áp dụng BĐT AM - GM ta có:

$ \frac{a^3}{(1 + b)(1 + c)} + \frac{1 + b}{8} + \frac{1 + c}{8} \geq \frac{3}{4}a$

$\frac{b^3}{(1 + c)(1 + a)} + \frac{1 + c}{8} + \frac{1 + a}{8} \geq \frac{3}{4}b$

$\frac{c^3}{(1 + a)(1 + b)} + \frac{1 + a}{8} + \frac{1 + b}{8} \geq \frac{3}{4}c $

Cộng vế theo vế ta được:

$ P + \frac{2(a + b + c) + 6}{8} \geq \frac{3}{4}(a + b + c) $

$<=> P \geq \frac{1}{2}(a + b + c) - \frac{3}{4}$

$=> P \geq \frac{3}{4} (dpcm)$

25 tháng 5 2023

Ta chứng minh 2 bất đẳng thức phụ sau: với x, y, z dương thì:

\(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\left(1\right)\)

\(\left(1+x\right)\left(1+y\right)\left(1+z\right)\ge\left(1+\sqrt[3]{xyz}\right)^3\left(2\right)\)

+ Chứng minh BĐT (1), sử dụng BĐT AM - GM:

\(x^4+x^4+y^4+z^4\ge4x^2yz\)

\(y^4+y^4+x^4+z^4\ge4xy^2z\)

\(z^4+z^4+x^4+y^4\ge4xyz^2\)

Cộng dồn lại ta có: \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)

+ Chứng minh BĐT (2). Ta có:

\(\left(1+x\right)\left(1+y\right)\left(1+z\right)=1+x+y+z+xy+yz+xyz\ge1+3\sqrt[3]{xyz}+3\sqrt[3]{x^2y^2z^2}+xyz=\left(1+\sqrt[3]{xyz}\right)^3\)

Bây giờ ta quay lại chứng minh BĐT ở đề.

BĐT cần chứng minh tương đương với BĐT sau:

\(\sqrt[4]{\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4}\ge\sqrt[4]{3}+\dfrac{\sqrt[4]{243}}{2+abc}\)

\(\Leftrightarrow\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4\ge3\left(1+\dfrac{3}{2+abc}\right)^4\)

Sử dụng BĐT (1) ta có:

\(\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4\ge\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\left(3+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Sử dụng BĐT (2) và BĐT AM - GM ta có:

\(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\left(3+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^3\left(3+\dfrac{3}{\sqrt[3]{abc}}\right)\)

\(\Rightarrow\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\left(3+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\left(1+\dfrac{1}{\sqrt[3]{abc.1.1}}\right)^4\ge3\left(1+\dfrac{3}{2+abc}\right)^4\)

Vậy BĐT đã được chứng minh. Đẳng thức xảy ra <=> a = b = c.

AH
Akai Haruma
Giáo viên
22 tháng 3 2017

Hình như sai đề =)))

22 tháng 3 2017

vế phải bình phương hầy

11 tháng 4 2017

Áp dụng BĐT AM-GM ta có:

\(\dfrac{a^3}{b\left(c+1\right)}+\dfrac{c+1}{4}+\dfrac{b}{2}\ge3\sqrt[3]{\dfrac{a^3}{b\left(c+1\right)}\cdot\dfrac{c+1}{4}\cdot\dfrac{b}{2}}\)

\(=3\sqrt[3]{\dfrac{a^3}{4\cdot2}\cdot\dfrac{c+1}{c+1}\cdot\dfrac{b}{b}}=3\sqrt[3]{\dfrac{a^3}{8}}=\dfrac{3a}{2}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{b^3}{c\left(a+1\right)}\ge\dfrac{3b}{2};\dfrac{c^3}{a\left(b+1\right)}\ge\dfrac{3c}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT+\dfrac{a+b+c+3}{4}+\dfrac{a+b+c}{2}\ge\dfrac{3a+3b+3c}{2}\)

\(\Leftrightarrow VT+\dfrac{3\left(a+b+c\right)}{4}+\dfrac{3}{4}\ge\dfrac{3\left(a+b+c\right)}{2}\)

\(\Leftrightarrow VT+\dfrac{3}{4}\ge\dfrac{3\left(a+b+c\right)}{4}\). Mà theo AM-GM ta có:

\(a+b+c\ge3\sqrt[3]{abc}=3\)\(\Rightarrow VT+\dfrac{3}{4}\ge\dfrac{9}{4}\Rightarrow VT\ge\dfrac{3}{2}=VP\)

Đẳng thức xảy ra khi \(a=b=c=1\)

3 tháng 1 2019

3/ Áp dụng bất đẳng thức AM-GM, ta có :

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)

\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)

\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)

Cộng 3 vế của BĐT trên ta có :

\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)

AH
Akai Haruma
Giáo viên
4 tháng 1 2019

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)

Tiếp tục áp dụng BĐT AM-GM:

\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)

Do đó:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Đây là BĐT Iran 96 khá nổi tiếng. Bạn hoàn toàn có thể search trên google lời giải.

17 tháng 2 2021

Nó nổi tiếng mà sao e lại ko biết hiha