K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2019

Đề hơi nhầm 1 xíu nhé, 2004 ở dưới và 2005 ở trên :v

19 tháng 8 2020

Ap dung cong thuc \(\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}=1+\frac{1}{a}-\frac{1}{a+1}\) 

ta co \(E=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2005}-\frac{1}{2006}=2004+\frac{1}{2}-\frac{1}{2006}\)

19 tháng 8 2020

Ta có: 

 \(E=\sqrt{\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{\left(-3\right)^2}}+\sqrt{\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{\left(-4\right)^2}}+...+\sqrt{\frac{1}{1^2}+\frac{1}{2005^2}+\frac{1}{\left(-2006\right)^2}}\)

DO:   \(1+2+\left(-3\right)=0;1+3+\left(-4\right)=0;...;1+2005+\left(-2006\right)=0\)

=> TA ĐƯỢC:    \(E=\sqrt{\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{-3}\right)^2}+\sqrt{\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{-4}\right)^2}+...+\sqrt{\left(\frac{1}{1}+\frac{1}{2005}+\frac{1}{-2006}\right)^2}\)

=>   \(E=\frac{1}{1}+\frac{1}{2}-\frac{1}{3}+\frac{1}{1}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1}+\frac{1}{2005}-\frac{1}{2006}\)

=>   \(E=\left(\frac{1}{1}+\frac{1}{1}+...+\frac{1}{1}\right)+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\right)\)

DO TRONG E CÓ TẤT CẢ 2004 CĂN THỨC

=>   \(E=2004+\frac{1}{2}-\frac{1}{2006}=2004+\frac{501}{1003}=\frac{2010513}{1003}\)

NV
19 tháng 9 2019

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< \sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(P=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{2005\sqrt{2004}}\)

\(\Rightarrow P< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2004}}-\frac{1}{\sqrt{2005}}\right)\)

\(\Rightarrow P< 2\left(1-\frac{1}{\sqrt{2005}}\right)< 2.1=2\)