K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2017

1. Đ

2 S    ( lớn hơn hoặc =.)

3S    ( thêm hoặc =. vd x = 0)

5S ( với mọi x >0)

26 tháng 6 2023

a) \(\left(2a-b\right)\left(b+4a\right)+2a\left(b-3a\right)\)

\(=2ab+8a^2-b^2-4ab+2ab-6a^2\)

\(=\left(2ab+2ab-4ab\right)+\left(8a^2-6a^2\right)-b^2\)

\(=2a^2-b^2\)

b) \(\left(3a-2b\right).\left(2a-3b\right)-6a\left(a-b\right)\)

\(=6a^2-9ab-4ab+6b^2-6a^2+6ab\)

\(=\left(6a^2-6a^2\right)-\left(9ab+4ab-6ab\right)+6b^2\)

\(=-7ab+b^2\)

c) \(5b\left(2x-b\right)-\left(8b-x\right)\left(2x-b\right)\)

\(=10bx-5b^2-\left(16bx-8b^2-2x^2+bx\right)\)

\(=10bx-5b^2-16bx+8b^2+2x^2-bx\)

\(=\left(10bx-16bx-bx\right)-\left(5b^2-8b^2\right)+2x^2\)

\(=-7bx+3b^2+2x^2\)

d) \(2x\left(a+15x\right)+\left(x-6a\right)\left(5a+2x\right)\)

\(=2ax+30x^2+5ax+2x^2-30a^2-12ax\)

\(=\left(2ax+5ax-12ax\right)+\left(30x^2+2x^2\right)-30a^2\)

\(=-5ax+32x^2-30a^2\)

a: =2ab+8a^2-b^2-4ab+2ab-6a^2

=2a^2-b^2

b: =6a^2-9ab-4ab+6b^2-6a^2+6ab

=-7ab+6b^2

c: =10bx-5b^2-16bx+8b^2+2x^2-xb

=3b^2+2x^2-7xb

d: =2xa+30x^2+5ax+2x^2-30a^2-12ax

=32x^2-30a^2-5ax

7 tháng 3 2019

1 ) Do \(3a-b=5\Rightarrow b=3a-5\)

Ta có : \(A=\frac{5a-b}{2a+5}-\frac{3b-3a}{2b-5}=\frac{5a-3a+5}{2a+5}-\frac{3\left(3a-5\right)-3a}{2\left(3a-5\right)-5}=\frac{2a+5}{2a+5}-\frac{6a-15}{6a-15}=1-1=0\)

Vậy \(A=0\)

2 ) \(P=x^4+x^2+1=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)^2-x^2=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

Để P là số nguyên tố thì \(Ư\left(P\right)=\left\{1;P\right\}\)

Vì x dương \(\Rightarrow x^2+x+1>x^2-x+1\)

\(\Rightarrow x^2-x+1=1\)

\(\Rightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=1\end{matrix}\right.\)

Vậy x = 1 thì P là số nguyên tố

7 tháng 3 2019

Cảm ơn ạ

3 tháng 7 2019

a)  (2a - b)(b + 4a) + 2a(b - 3a)
= 2a(b + 4a) - b(b + 4a) + 2ab - 6a^2
= 2ab + 8a^2 - b^2 - 4ab + 2ab - 6a^2
= (8a^2 - 6a^2) + (2ab + 2ab - 4ab) - b^2
= 2a^2 - b^2
b) .(3a - 2b)(2a - 3b) - 6a(a - b)
= 3a(2a - 3b) - 2b(2a - 3b) - (6a^2 - 6ab)
= 6a^2 - 9ab - (4ab - 6b^2) - (6a^2 - 6ab)
= 6a^2 - 9ab - 4ab + 6b^2 - 6a^2 + 6ab
= 6b^2 + (6a^2 - 6a^2) + (6ab - 4ab - 9ab)
= 6b^2 - 7ab

c. 5b(2x - b) - (8b - x)(2x - b)
= 10bx - 5b^2 - 8b(2x - b) + x(2x - b)
= 10bx - 5b^2 - 16bx + 8b^2 + 2x^2 - bx
= (10bx - 16bx - bx) + 2x^2 + (8b^2 - 5b^2)
= -7bx + 2x^2 + 3b^2
d. 2x(a + 15x) + (x - 6a)(5a + 2x)
= 2ax + 30x^2 + x(5a + 2x) - 6a(5a + 2x)
= 2ax + 30x^2 + 5ax + 2x^2 - 30a^2 - 12ax
= (30x^2 + 2x^2) + (2ax + 5ax - 12ax) - 30a^2
= 32x^2 - 5ax - 30a^2

Chúc bạn hok tốt !!!

4 tháng 9 2019

1) (a+2b+1)2

=a2+2a(2b+1)+(2b+1)2

=a2+4ab+2a+(2b)2+2.2b.1+12

=a2+4ab+2a+4b2+4b+1

2) (2a-b+3)2

=(2a)2 -2.2a(b-3)+(b-3)2

=4a2-4a(b-3)+b2-2b.3+32

=4a2-4ab+12a+b2 -6b+9

3) (2a-3b+1)2

=(2a)2-2.2a(3b-1)+(3b-1)2

=4a2-4a(3b-1)+(3b)2-2.3b.1+12

=4a2-4ab+4a+9b2-6b+1

4 tháng 8 2017

1)\(x^2+6x+13=x^2+6x+9+4=\left(x+3\right)^2+4\)

Do \(\left(x+3\right)^2\ge0\)với mọi x

Nên \(\left(x+3\right)^2+4\ge4>0\)với mọi x 

Hay \(x^2+6x+13>0\)với mọi x

4 tháng 8 2017

2/ Ta có: x + 6x + 13 = x2 + 2.3x + 9 +4 = ( x + 3)2 + 4

Ta có: (x+3)>0 (với mọi x)

Nên (x+3)2 + 4 \(\ge\)4 >0.

3/ Ta có: - x2+6x-11 = - (x2-6x+11)  = - (x2-2.3x+9+2) = - (x-3)2-2

Ta có: (x-3)2>0 với mọi x

Nên - (x-3)2<0 với mọi x

Suy ra - (x-3)2-2 \(\le\)- 2 <0

4/ Ta có: x -  y = 5 

Suy ra (x - y)2 = 25

\(\Leftrightarrow\)  x2 - 2xy + y2  = 25

\(\Leftrightarrow\)x2 - 2.24  + y= 25

\(\Leftrightarrow\)  x+ y2 = 73

Ta có: x3 - y3 = (x - y).(x2  + xy + y2 ) = 5.(73 + 24) =485