Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(A=\sum\dfrac{x^3}{\sqrt{y^2+3}}\)
Theo Holder: \(A.A.\left(\left(y^2+3\right)+\left(z^2+3\right)+\left(x^2+3\right)\right)\ge\left(x^3+y^3+z^3\right)^3\)
\(\Rightarrow A^2\ge\dfrac{\left(x^3+y^3+z^3\right)^3}{x^2+y^2+z^2+9}\ge\dfrac{\left(x^3+y^3+z^3\right)^3}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}=\dfrac{\left(x^3+y^3+z^3\right)^3}{\left(x+y+z\right)^2+xy+yz+zx}\ge\dfrac{\left(x^3+y^3+z^3\right)^3}{\left(x+y+z\right)^2+\dfrac{\left(x+y+z\right)^2}{3}}\)
Ta có đánh giá sau: \(x^3+y^3+z^3\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x+y+z}\ge\dfrac{\left(x+y+z\right)^3}{9}\)
\(\Rightarrow A^2\ge\dfrac{\dfrac{\left(x+y+z\right)^3}{9}}{\left(x+y+z\right)^2+\dfrac{\left(x+y+z\right)^2}{3}}=\dfrac{x+y+z}{12}\ge\dfrac{\sqrt{3\left(xy+yz+zx\right)}}{12}\ge\dfrac{1}{4}\)
\(\Rightarrow A\ge\dfrac{1}{2}\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=\dfrac{45}{9}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
c: Ta có: 10x=6y
nên x/3=y/5
Đặt x/3=y/5=k
=>x=3k; y=5k
Ta có: \(2x^2-y^2=-28\)
\(\Leftrightarrow2\cdot9k^2-25k^2=-28\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
=>x=6; y=10
TRường hợp 2: k=-2
=>x=-6; y=-10
\(VT=\sum\frac{2}{x^2+y^2}=\sum\frac{x^2+y^2+z^2}{x^2+y^2}=\sum\left(1+\frac{z^2}{x^2+y^2}\right)\ge\sum\left(1+\frac{z^2}{2xy}\right)=3+\frac{x^3+y^3+z^3}{2xyz}\)
Vậy đẳng thức đã được chứng minh . Dấu "=" xảy ra khi \(x=y=z=\sqrt{\frac{3}{2}}\)
áp dụng bđt cosi có:
\(\left\{{}\begin{matrix}x^3+y^2\ge2xy\sqrt{x}\\y^3+z^2\ge2yz\sqrt{y}\\z^3+x^2\ge2zx\sqrt{z}\end{matrix}\right.\)
\(\Rightarrow VT\le\frac{2\sqrt{x}}{2xy\sqrt{x}}+\frac{2\sqrt{y}}{2yz\sqrt{y}}+\frac{2\sqrt{z}}{2zx\sqrt{z}}=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)
Ta cần cm: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Rightarrow xy+yz+zx\ge x^2+y^2+z^2\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\le0\)(sai)
=> đề sai
Cần thêm điều kiện x;y;z dương, nếu không đây là 1 BĐT sai