Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=1+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}$
$< 1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}$
$=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}$
=2-\frac{1}{50}< 2$
(đpcm)
1/22 < 1/2.3 ; 1/32 < 1/3.4 ; .....; 1/502 < 1/50.51 => A < 1+1-1/2+1/2-1/3+...1/50-1/51 < 2
Gọi \(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\) là \(S\)
\(S=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\\ S< \dfrac{1}{1}+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\\ S< 1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ S< 1+1-\dfrac{1}{50}\\ S< 2-\dfrac{1}{50}< 2\)
Vậy \(S< 2\)
Lời giải:
Đặt \(T=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\)
Dễ thấy:
\(\dfrac{1}{1^2}=1\)
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(....\)
\(\dfrac{1}{50^2}=\dfrac{1}{50.50}< \dfrac{1}{49.50}\)
\(\Rightarrow T< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)
\(\Rightarrow T< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(\Rightarrow T< 1+1-\dfrac{1}{50}\)
\(\Rightarrow T< 2-\dfrac{1}{50}\)
\(\Rightarrow T< 2\)
P=1+1/2+1/3+1/4+...+1/2^100-1
suy ra P=1+1/2+1/3+1/2^2+...+1/2^100+1/2^100-1+1/2^100-1/2^100
suy ra P=1+1/2+(1/3+1/2^2)+(1/5+1/2^3)+...+(1/2^99+1+...+1/2^100)-1/2^100
suy ra P>1+1/2+1/2^2.2+1/2^3.3^2+...+1/2^100.2^99-1/2^100
suy ra P>1+1/2.100-1/2^100
suy ra P>51-1/2^100>51-1
suy ra P>50(đpcm)
1/2 + 1/2^2 + 1/3^2 + .....+ 1/50^2 < 1/1 + 1/1.2 + 1/2.3 +...+ 1/49.50
Đặt A = 1/1 + 1/1.2 + 1/2.3 +...+ 1/49.50
A= 1/1 - 1/1 + 1/1 -1/2 + 1/2 -1/3+...+ 1/49-1/50
A= 1/1 - 1/50
A= 49/50
Vì 49/50 < 1 mà 1/2 + 1/2^2 + 1/3^2 + .....+ 1/50^2 < 49/50 nên 1/2 + 1/2^2 + 1/3^2 + .....+ 1/50^2 <1
Vậy....