K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có: 32010 + 52010 = (33)670 + (52)1005 = 27670 + 251005 = (26 + 1)670 + (26 - 1)1005 = 26A + 1670 - 11005 = 26A chia hết cho 13

=> 32010 + 52010 chia hết cho 13

t i c k nha!!!  6756845645765576599435256344465757686878976

21 tháng 11 2021

=1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 :}

22 tháng 12 2015

Minh lam cau A) thoi duoc hong

4 tháng 12 2014

A=2^1+2^2+2^3+2^4+...+2^2010 

=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)

=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)

=2.3+2^3.3+...+2^2010.3

=(2+2^3+2^2010).3

=> A chia het cho 3

​​​​ 

 

10 tháng 12 2014

Mà câu c bạn đánh chia hết thành chết hết rồi kìa

8 tháng 3 2016

A=2010+20102+20103+.....+20102010

A=2010(1+2010)+20103(1+2010)+........+20109(1+2010)

A=2010.2011+20103.2010+....+20109.2011

A=2011(2010+....+20109) chia hết cho 2011

=> A chia hết cho 2011(đpcm)

9 tháng 2 2021

A = 2010 + 20102 + 20103 + ... + 20102010

A = 2010 . ( 1 + 2010 ) + 20103 . (1 + 2010 ) + ... + 20109 . ( 1 + 2010 )

A = 2010 . 2011 + 20103 . 2011 + ... + 20109 . 2011

A = 2011 . ( 2010 + 20103 + ... + 20109 )

Mà 2011 . ( 2010 + 20103 + ... + 20109 ) \(\in\)2011

=> A \(\in\)2011

๖²⁴ʱ𝒄𝒉𝒖́𝒄 𝒆𝒎 𝒉𝒐̣𝒄 𝒕𝒐̂́𝒕✟ᴾᴿᴼシ

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:
$A=2^1+2^2+2^3+2^4$

$2A=2^2+2^3+2^4+2^5$

$\Rightarrow 2A-A=2^5-2^1$

$\Rightarrow A=2^5-1=32-1=31$

----------------------------

$B=3^1+3^2+3^3+3^4$

$3B=3^2+3^3+3^4+3^5$

$\Rightarrow 3B-B = 3^5-3$

$\Rightarrow 2B = 3^5-3\Rightarrow B = \frac{3^5-3}{2}$

--------------------------

$C=5^1+5^2+5^3+5^4$

$5C=5^2+5^3+5^4+5^5$

$\Rightarrow 5C-C=5^5-5$

$\Rightarrow C=\frac{5^5-5}{4}$

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 2: Sai đề bạn nhé. Bạn xem lại.

31 tháng 12 2022

b: B=3(1+3)+3^3(1+3)+...+3^2009(1+3)

=4(3+3^3+...+3^2009) chia hết cho 4

B=3(1+3+3^2)+3^4(1+3+3^2)+...+3^2008(1+3+3^2)

=13(3+3^4+...+3^2008) chia hết cho 13

c: \(C=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2009}\left(1+5\right)\)

\(=6\left(5+5^3+...+5^{2009}\right)⋮6\)

\(C=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)

\(=31\left(5+5^4+...+5^{2008}\right)⋮31\)

d: \(D=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{2009}\left(1+7\right)\)

\(=8\left(7+7^3+...+7^{2009}\right)⋮8\)

\(D=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)

\(=57\left(7+7^4+...+7^{2008}\right)⋮57\)

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn