Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n+3 chi hết cho n+1
=>2n+2+1 chia hết cho n+1
Vì 2n+2 chia hết cho n+1
=> 1 chia hết cho n+1
=> n+1 thuộc Ư(1)
n+1 | n |
1 | 0 |
-1 | -2 |
KL: n=0 hoặc n= -2
4n+8 chia hết cho 2n+2
=> 4n+4+4 chia hết cho 2n+2
Vì 4n+4 chia hết cho 2n+2
=> 4 chia hết cho 2n+2
=> 2n+2 thuộc Ư(4)
2n+2 | n |
1 | KTM |
-1 | KTM |
2 | 0 |
-2 | -2 |
4 | 1 |
-4 | -3 |
KL: n thuộc..............
ta co : n^2+4n+5
= n^2-1+4n+6
= (n-1).(n+1)+2.(2n+3)
Do n lẻ nên n-1 và n+1 là 2 số chẵn liên tiếp
= > (n-1).(n+1) không chia hết cho 8
mà 2n+3 le => 2n+3 không chia hết cho 4 => 2.(2n+3) không chia hết cho 8
=> (n-1).(n+1) + 2 .(2n+3) không chia hết cho 8
=> n^2+4n+5 không chia hết cho 8 ( dpcm)
Tk cho mk nha bn ! thanks bn nhìu
Vì n là số lẻ
=> n2:4(dư 1)
Mà 4n chia hết cho 4 ; 5 ;4 (dư 1)
=> n2+4n+5 : 4 (dư 2)
=> n2+4n+5 không chia hết cho 4
Mà 8 chia hết cho 4
=> n2+4n+5 không chia hết cho 8
a) Ta có :
\(n+5⋮n+2\)
Mà \(n+2⋮n+2\)
\(\Leftrightarrow3⋮n+2\)
Vì \(n\in N\Leftrightarrow n+2\in N;n+2\inƯ\left(3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+2=1\Leftrightarrow n=-1\left(loại\right)\\n+1=3\Leftrightarrow n=2\left(tm\right)\end{matrix}\right.\)
Vậy ....
b) Ta có :
\(4n+9⋮n+1\)
Mà \(n+1⋮n+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n+9⋮n+1\\4n+4⋮n+1\end{matrix}\right.\)
\(\Leftrightarrow5⋮n+1\)
Vì \(n\in N\Leftrightarrow n+1\in N;n+1\inƯ\left(5\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+1=1\Leftrightarrow n=0\\n+1=5\Leftrightarrow n=4\end{matrix}\right.\)
Vậy ....
a) n+2 \(\in\)B(3)={0;3;6;9;12;15;18;21;...}
\(\Rightarrow\)n=1;4;7;10;13;16;19;....
b) 4n-5 \(\in\)B(13)={0;13;26;39;42;.....}
\(\Rightarrow\)n=5;18;31;44;47;...
c) 5n-1 \(\in\)B(7)={0;7;14;21;28;35;42;...}
\(\Rightarrow\)n=3
d) 25n+3 \(\in\)B(57)={0;57;114;171;228;285...}
\(\Rightarrow\)n=9
Ta có:
4n . 4n + 12n + 10
= 16n2 + 12n + 10
= 4 . (4n2 + 3n) + 10
Vì 4 . (4n2 + 3n) \(⋮\) 4 và 10 \(⋮̸\) 4
Nên 4 . (4n2 + 3n) + 10 \(⋮̸\) 4.
Vậy 4n . 4n + 12n + 10 \(⋮̸\) 4.
cảm ơn bạn