K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2023

Ta có công thức tổng của dãy số hình thành bởi lũy thừa của một số là:

S = a(1 - r^n)/(1 - r),

trong đó a là số hạng đầu tiên, r là công bội và n là số lượng số hạng.

Áp dụng công thức trên vào bài toán của chúng ta, ta có:

a = 5, r = 5 và n = 99.

Thay các giá trị vào, ta có:

S = 5(1 - 5^99)/(1 - 5).

Tuy nhiên, để xác định xem S có chia hết cho 31 hay không, ta cần tính S modulo 31.

Ta biết rằng nếu a ≡ b (mod m) và c ≡ d (mod m), thì a + c ≡ b + d (mod m) và a * c ≡ b * d (mod m).

Áp dụng tính chất này vào công thức trên, ta có:

S ≡ 5(1 - 5^99)/(1 - 5) ≡ 5(1 - 5^99)/(-4) ≡ -5(1 - 5^99)/4 (mod 31).

Tiếp theo, ta cần xác định giá trị của 5^99 modulo 31.

Ta biết rằng nếu a ≡ b (mod m), thì a^n ≡ b^n (mod m).

Áp dụng tính chất này vào bài toán của chúng ta, ta có:

5^99 ≡ (5^3)^33 ≡ 125^33 ≡ 4^33 (mod 31).

Tiếp tục, ta có thể tính giá trị của 4^33 modulo 31 bằng cách sử dụng phép lũy thừa modulo:

4^1 ≡ 4 (mod 31), 4^2 ≡ 16 (mod 31), 4^3 ≡ 2 (mod 31), 4^4 ≡ 8 (mod 31), 4^5 ≡ 1 (mod 31).

Do đó, ta có:

4^33 ≡ 4^5 * 4^4 * 4^4 * 4^4 * 4^4 * 4^4 * 4 ≡ 1 * 8 * 8 * 8 * 8 * 8 * 4 ≡ 4096 ≡ 1 (mod 31).

Vậy, chúng ta có:

S ≡ -5(1 - 5^99)/4 ≡ -5(1 - 1)/4 ≡ 0 (mod 31).

Kết quả là tổng A chia hết cho 31.

DT
30 tháng 10 2023

A = (5 +5^2+5^3) +(5^4+5^5+5^6)+...+(5^97+5^98+5^99)

= 5(1+5+5^2)+5^4(1+5+5^2)+...+5^97(1+5+5^2)

= 5.31+5^4.31+...+5^97.31

= 31(5+5^4+...+5^97) chia hết cho 31

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Lời giải:
$a=1+5+5^2+5^3+...+5^{2022}+5^{2023}$

$5a=5+5^2+5^3+5^4+....+5^{2023}+5^{2024}$

$\Rightarrow 5a-a=5^{2024}-1$

$\Rightarrow 4a=5^{2024}-1$

$\Rightarrow 4a+1=5^{2024}\vdots 5^{2023}$ (đpcm)

8 tháng 6 2018

b ) B = 5 + 52 + ... + 57 . 58

= ( 5 + 52 ) + ... + ( 57 . 5)

= 5 . ( 1 + 5 ) + ... + 57 . ( 1 + 5 )

= 5 . 6 + ... + 57 . 6

= 6 . ( 5 + ... + 57 ) \(⋮\)6

8 tháng 6 2018

a ) 53! - 51!

= 51! . ( 52 . 53 - 1 )

= 51! . 2755 

mà 2755 \(⋮\)29 => 51! . 2755 

Vậy 53! - 51!  \(⋮\)29

8 tháng 9 2017

Ta có \(S=2+2^3+...+2^{99}\)

\(\Rightarrow2S=2^2+2^4+2^5+...+2^{100}\)

\(\Rightarrow2S=S-6+2^{100}\)

\(\Rightarrow S=2^{100}-6=2\left(2^{99}-3\right)\)

Ta thấy 24k có tận cùng là  6; 24k+1 có tận cùng là 2; 24k+2 có tận cùng là 4; 24k+3 có tận cùng là 8.

Mà 99 = 4.24 + 3 nên 299 có tận cùng là 8. Vậy thì 299 - 3 có tận cùng là 5 nên chia hết cho 5.

Tóm lại S chia hết cho 10 và 5.

8 tháng 9 2017

22 đâu bạn?