K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, \(a>b\) nên \(a-b>0\)

\(c>d\) nên \(c-d>0\)

Do đó : \(a-b+c-d>0\)

\(\Leftrightarrow a+c-\left(b+d\right)>0\)

\(\Leftrightarrow a+c>b+d\)

b, \(a>b>0\)nên \(\frac{a}{b}>1\)

\(c>d>0\)nên \(\frac{c}{d}>1\)

\(\Rightarrow\frac{a}{b}.\frac{c}{d}>1\)

\(\Leftrightarrow\frac{ac}{bd}>1\)

\(\Leftrightarrow ac>bd\)

31 tháng 12 2016

Ai biết cách làm giải hộ đi///

11 tháng 8 2017

Giúp mình với!

11 tháng 8 2017

b1: ta có: a^2+b^2 >0 ; b^2 +c^2>0 ; c^2 +a^2>0

=> \(a^2+b^2\ge2\sqrt{a^2.b^2}\) (BĐT cau chy)

\(b^2+c^2\ge2\sqrt{b^2.c^2}\) (BĐT cau chy)

\(c^2+a^2\ge2\sqrt{c^2.a^2}\)(BĐT cauchy)

=>\(\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8a^2.b^2.c^2\)

Dấu '= xảy ra khi a=b=c (đpcm)

5 tháng 8 2015

a) Ta có: (a + b + c + d)(a - b - c +d )=( (a + d) + (b + c) )( (a + d) - (b + c) )

                                                     =(a + d )- (b +c )2                             (1)

              (a - b + c - d)(a + b - c - d)=(a - d)- (b - c)2                                  (2)

Từ (1) và (2)  => a+ 2ad + d- b- 2bc - c2=a- 2ad + d- b+ 2bc - c2

4ad=4bc => ad=bc <=> \(\frac{a}{c}=\frac{b}{d}\)  (đpcm)

 

30 tháng 6 2015

giả sử a=b=c=d => \(a^4+a^4+a^4+a^4=4.a.a.a.a\Leftrightarrow4a^4=4a^4\)=> thỏa mãn điều kiện đầu bài

=> điểu giả sử đúng

30 tháng 6 2015

Áp đụng BĐT co si ta có:

a4+b4>2a2b2

b4+c4>2b2c2

c4+d4>2c2d2

d4+a4>2a2d2

=>2(a4+b4+c4+d4)>2(a2b2+b2c2+c2d2+a2d2)

=>a4+b4+c4+d4>a2b2+b2c2+c2d2+a2d2(1)

Dấu"=" xảy ra <=>a=b=c=d

Tiếp tục ta có:

a2b2+c2d2>2abcd

b2c2+a2d2>2bcd

=>a2b2+b2c2+c2d2+a2d2>4abcd(2)

Từ 1 và 2 =>a4+b4+c4+d4>4abcd

Dấu "=" xảy ra <=>a=b=c=d

=>a4+b4+c4+d4=4abcd<=>a=b=c=d

Ta có: \(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)

\(\Leftrightarrow\left(a+d\right)^2-\left(b+c\right)^2=\left(a-d\right)^2-\left(b-c\right)^2\)

\(\Leftrightarrow\left(a+d-a+d\right)\left(a+d+a-d\right)=\left(b+c-b+c\right)\left(b+c+b-c\right)\)

\(\Leftrightarrow2d\cdot2a=2c\cdot2b\)

\(\Leftrightarrow ad=bc\)

hay \(\dfrac{a}{c}=\dfrac{b}{d}\)

19 tháng 12 2016

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(x+\frac{1}{x}\ge2\sqrt{x\cdot\frac{1}{x}}=2\)

Dấu "=" xảy ra khi \(x=1\)

Bài 2:

Áp dụng BĐT AM-GM ta có:

\(a^2+b^2+c^2+d^2\ge4\sqrt[4]{a^2b^2c^2d^2}=4\) (1)

\(ab+cd\ge2\sqrt{abcd}=2\) (2)

\(ac+bd\ge2\sqrt{acbd}=2\) (3)

\(ad+bc\ge2\sqrt{adbc}=2\) (4)

Cộng theo vế của (1),(2),(3),(4) ta có điều phải chứng minh

Dấu "=" khi \(\begin{cases}a=b=c=d\\abcd=1\end{cases}\)\(\Rightarrow a=b=c=d=\frac{1}{4}\)

 

19 tháng 12 2016

1) \(x+\frac{1}{x}\ge2\left(1\right)\)

<=> \(\frac{x^2+1}{x}\ge2\)

<=> x2 + 1 \(\ge\)2x

<=> x2 + 1 - 2x \(\ge\) 0

<=> (x - 1)2 \(\ge\)0 (2)

Bđt (2) đúng vậy bđt (1) được chứng minh

b) Áp dụng bđt AM-GM cho 10 số dương ta có:

a2+b2+c2+d2+ab+ac+ad+bc+bd+cd

\(\ge10\sqrt[10]{a^2.b^2.c^2.d^2.ab.ac.ad.bc.bd.cd}=10\sqrt[10]{\left(a.b.c.d\right)^5}\)

\(=10\sqrt[10]{1}=10\left(đpcm\right)\)