Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Vì \(-5n⋮5\) với n thuộc Z
\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z
b) Ta có:
\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n\)
\(=5\left(n^2+n\right)\)
Vì \(5\left(n^2+n\right)⋮5\)
\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)
c) Ta có:
\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)
\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)
Vì \(2\left(xy+1\right)y^{2003}⋮2\)
\(2\left(x^{2003}+y^{2003}\right)⋮2\)
\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)
\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)
Lời giải:
$P=(x+y+z)^3-(x^3+y^3+z^3)=3(x+y)(y+z)(z+x)$ theo HĐT đáng nhớ.
Nếu $x,y,z$ cùng tính chẵn lẻ thì $x+y, y+z, z+x$ chẵn
$\Rightarrow (x+y)(y+z)(z+x)\vdots 8$
$\Rightarrow P\vdots 24$
Ta có đpcm.
Trần Quốc Tuấn hi: hai số $a,b$ cùng tính chẵn lẻ nghĩa là nếu $a$ chẵn thì $b$ chẵn, $a$ lẻ thì $b$ lẻ.
Hai số cùng tính chẵn lẻ thì tổng hoặc hiệu của chúng sẽ chẵn. Bằng chứng là chẵn + chẵn = chẵn, lẻ + lẻ = chẵn.
Áp dụng vào bài: $x,y,z$ cùng tính chẵn lẻ nên:
$x+y$ chẵn nên $x+y$ chia hết cho $2$
$y+z$ chẵn nên $y+z$ chia hết cho $2$
$z+x$ chẵn nên $z+x$ chia hết cho $2$
Do đó: $(x+y)(y+z)(z+x)$ chia hết cho $8$
Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.
Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.
Lời giải:
$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)$
Vì $x+y+z\vdots 6\vdots 2$ nên trong 3 số $x,y,z$ có thể có: 2 số
lẻ 1 số chẵn, 3 số chẵn
Nếu $x,y,z$ là 3 số chẵn thì hiển nhiên $(x+y)(y+z)(x+z)\vdots 2$
Nếu $x,y,z$ có 2 số lẻ, 1 số chẵn thì tổng 2 số lẻ đó là 1 số chẵn
$\Rightarrow$ trong 3 số $x+y,y+z,x+z$ sẽ có 1 số chẵn.
$\Rightarrow (x+y)(y+z)(x+z)\vdots 2$
Vậy $(x+y)(y+z)(x+z)\vdots 2$
$\Rightarrow 3(x+y)(y+z)(x+z)\vdots 6$
Mà $x+y+z\vdots 6$
$\Rightarrow x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)\vdots 6$
Có \(\left(x+y+z\right)^3-\left(x^3+y^3+z^3\right)\)
\(=\left[\left(x+y\right)+z\right]^3-\left(x^3-y^3-z^3\right)\)
\(=\left(x+y\right)^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2+z^3-\left(x^3+y^3+z^3\right)\)
\(=3xy\left(x+y\right)+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)
\(=3\left(x+y\right)\left[xy+\left(x+y\right)z+z^2\right]\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Do x,y,z nguyên và cùng tính chẵn lẻ \(\Rightarrow\left(x+y\right);\left(y+z\right);\left(z+x\right)\) đều là ba số chẵn
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)⋮8\)
mà (3;8)=1 và 3.8=24
\(\Rightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)⋮24\) (đpcm)