K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
22 tháng 1 2021

1) \(2\left(1-a\right)^2\ge1-2a^2\)

\(\Leftrightarrow2-4a+2a^2-1+2a^2\ge0\)

\(\Leftrightarrow4a^2-4a+1\ge0\)

\(\Leftrightarrow\left(2a-1\right)^2\ge0\)

Bất đẳng thức cuối cùng đúng, mà biến đổi tương đương nên bất đẳng thức ban đầu cũng đúng. 

2) \(\left(1+a^2\right)\left(1+b^2\right)\ge\left(1+ab\right)^2\)

\(\Leftrightarrow1+a^2+b^2+a^2b^2-1-2ab-a^2b^2\ge0\)

\(\Leftrightarrow a^2+b^2-2ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

Bất đẳng thức cuối cùng đúng, mà biến đổi tương đương nên bất đẳng thức ban đầu cũng đúng. 

c) Câu này sai đề rồi nha. 

d) Làm tương tự a), b). 

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 1:

Áp dụng BĐT Bunhiacopxky ta có:

$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$

$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$

$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 2: 

Áp dụng BĐT Bunhiacopxky:

$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$

$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$

$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$

$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>

 

NV
21 tháng 7 2021

Cả 4 đều không đúng:

A. Sai khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và nhiều trường hợp khác 

A. Sai khi \(\left(a;b\right)=\left(1;1\right)\) và nhiều trường hợp khác

C. Sai khi \(\left(x;y\right)=\left(-1;-1\right)\) và nhiều trường hợp khác

D. Sai khi \(\left(x;y;z\right)=\left(-1;-1;1\right)\) và nhiều trường hợp khác

NV
10 tháng 6 2020

\(\frac{1-2sin^2x}{1-tanx}=\frac{cosx\left(1-2sin^2x\right)}{cosx-sinx}=\frac{cosx\left(cos^2x-sin^2x\right)}{cosx-sinx}=\frac{cosx\left(cosx+sinx\right)\left(cosx-sinx\right)}{cosx-sinx}\)

\(=cosx\left(cosx+sinx\right)=\frac{cosx\left(cosx+sinx\right)^2}{cosx+sinx}=\frac{cos^2x+sin^2x+2sinx.cosx}{1+\frac{sinx}{cosx}}=\frac{1+sin2x}{1+tanx}\)

\(\frac{x}{2}=a\Rightarrow\frac{cot^2a-cot^23a}{cos^2a.cos2a\left(1+cot^23a\right)}=\frac{sin^23a\left(cot^2a-cot^23a\right)}{cos^2a.cos2a}=\frac{sin^23a.cot^2a-cos^23a}{cos^2a.cos2a}\)

\(=\frac{sin^23a.cos^2a-cos^23a.sin^2a}{sin^2a.cos^2a.cos2a}=\frac{\left(sin3a.cosa-cos3a.sina\right)\left(sin3a.cosa+cos3a.sina\right)}{sin^2a.cos^2a.cos2a}\)

\(=\frac{sin\left(3a-a\right).sin\left(3a+a\right)}{sin^2a.cos^2a.cos2a}=\frac{sin2a.sin4a}{sin^2a.cos^2a.cos2a}=\frac{2sina.cosa.4sina.cosa.cos2a}{sin^2a.cos^2a.cos2a}\)

\(=\frac{8sin^2a.cos^2a.cos2a}{sin^2a.cos^2a.cos2a}=8\)

\(sin\left(a+b+a\right)=5sin\left(a+b-a\right)\)

\(\Leftrightarrow sin\left(a+b\right)cosa+cos\left(a+b\right).sina=5sin\left(a+b\right).cosa-5cos\left(a+b\right).sina\)

\(\Leftrightarrow6cos\left(a+b\right).sina=4sin\left(a+b\right).cosa\)

\(\Leftrightarrow\frac{2sin\left(a+b\right)cosa}{cos\left(a+b\right)sina}=3\Leftrightarrow\frac{2tan\left(a+b\right)}{tana}=3\)

6 tháng 5 2022

Xét \(\dfrac{a}{a^2+1}+\dfrac{3\left(a-2\right)}{25}-\dfrac{2}{5}=\dfrac{a}{a^2+1}+\dfrac{3a-16}{25}=\dfrac{\left(3a-4\right)\left(a-2\right)^2}{25\left(a^2+1\right)}\ge0\)

\(\Rightarrow\dfrac{a}{a^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(a-2\right)}{25}\)

CMTT \(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{b^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(b-2\right)}{25}\\\dfrac{c}{c^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(c-2\right)}{25}\end{matrix}\right.\)

Cộng vế theo vế:

\(\Rightarrow VT\ge\dfrac{2}{5}+\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3\left(a-2\right)+3\left(b-2\right)+3\left(c-2\right)}{25}\ge\dfrac{6}{5}-\dfrac{3\left(a+b+c-6\right)}{25}=\dfrac{6}{5}\)

Dấu \("="\Leftrightarrow a=b=c=2\)

6 tháng 5 2022

Mà câu này làm được rồi, giúp được câu kia không

9 tháng 10 2016

\(sina+cosa=\sqrt{2}\Leftrightarrow\left(sina+cosa\right)^2=2\\ \)

\(\Leftrightarrow\sin^2a+2\sin a.cosa+cos^2a=2\)

\(\Leftrightarrow1+2.sina.cosa=2\)

\(\Leftrightarrow2.sina.cosa=2-1=1\)

\(\Leftrightarrow\sin a.cosa=\frac{1}{2}\)

Vậy  P=sina.cosa=\(\frac{1}{2}\)

\(Q=\sin^4a+cos^4a\)

\(\Leftrightarrow\left(sin^2a\right)^2+\left(cos^2a\right)^2\)

\(\Leftrightarrow\left(sin^2a+cos^2a\right)^2-2.sin^2a.cos^2a\)

\(\Leftrightarrow1^2-2.sin^2a.cos^2a\) tách tiếp rồi thế vào là được .tương tự phàn P ý
còn R thì tách sin^3a=sin^2a+sina tương tự cos mũ 3 a cụng vậy
theo tớ là như thế còn có sai thì đừng có ném đá ném gạch na

 

 

Trắc nghiệm (4 điểm) Câu 1: Bất phương trình 2x  3  2x  6  3x 1 xác định khi nào? x1 x1  x  1 A. x1  x   1 B. x1  x  1 C. x1  x   1 D. x1  3   3 Câu 2: Tập nghiệm của bất phương trình 2x 13x  2  0 là A. B.  3 D. 2;  3 A.;21; B. 2;1 C. 1;2 ...
Đọc tiếp

Trắc nghiệm (4 điểm)
Câu 1: Bất phương trình 2x  3  2x  6  3x 1 xác định khi nào?
x1 x1
 x  1 A. x1
 x   1 B. x1
 x  1 C. x1
 x   1 D. x1
 3 
 3
Câu 2: Tập nghiệm của bất phương trình 2x 13x  2  0 là
A. B.
 3 D. 2;
 3 A.;21; B. 2;1 C. 1;2
323223 3 Câu 3: Nhị thức f x   2x  5 có bảng xét dấu như thế nào?
C.
Câu 4: Tập nghiệm của bất phương trình x 1  1 là
D.
x3
A. B.3; C. ;5 D. 
Câu5:Bấtphươngtrình 2xm2 10 cótậpnghiệmtrongkhoảng ;4 khi và chỉ khi:
A. m3 B. 3m3 C. m3 Câu 6: Điều kiện để tam thức bâc hai f x  ax2  bx  c
A. a0 B. a0 C. a0   0   0   0
D. m 3
a  0 lớn hơn 0 với mọi x là:
D. a0   0
Câu7:Bấtphươngtrình 2x2 5x30 cótậpnghiệmlà
D. ;31;   
A. 1;3 B. ;31; C.;13; 2 2   2
2 
Câu 8: Tập nghiệm của bất phương trình A. (;2](1;1)[2;)
C. (;2][2;)
Câu 9: Tập nghiệm của bất phương trình
3  1 là x2 1
B. [2;1)(1;2) D. (-1; 1)
2xx2 1
3  2x  x2  0 là
1
Mã đề 101
A. (3;1][0;1)(1;) B. (3;1][0;) C.(-;-3)[-1;0](1;+ ) D.(-3;-1)(1;+ )
Câu 10: Tổng của các nghiệm nguyên của hệ bất phương trình x  5  0 là: x50
A. 0 B. 5 C. 15 D. Không xác định được II. Tự luận (6 điểm)
Câu 1: Giải các bất phương trình sau
a) (3x2 – 10x + 3)(4x – 5) > 0
b) 3x47  4x47 3x 1 2x 1
2x3 x1
d) x27x632x
Câu 2. Tìm giá trị của m để các bất phương trình sau vô nghiệm.
(m–3)x2 +(m+2)x–4>0

1
21 tháng 4 2020

?