K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2016

mik làm thế này có đúng không nhỉ ?

a) Ta có : 

abab = ab . 101

Để abab là số chính phương thì ab chỉ có thể bằng 101.

Mà ab là số có hai chữ số 

=> abab không phải là số chính phương

b) Ta có : 

abcabc = abc . 1001

Để abcabc là số chính phương thì abc chỉ có thể bằng 1001.

Mà abc là số có 3 chữ số

=> abcabc không phải là số chinh phương

c) Ta có : 

ababab = ab . 10101

Để ababab là số chính phương thì ab chỉ có thể bằng 10101.

Mà ab là số có hai chữ số.

=> ababab không phải là số chính phương. 

Kết luận : abab ; abcabc ; ababab ko phải là số chính phương (đpcm)

bn án vào đúng 0 sẽ ra kết quả mình giải rồi

1/ Xét \(\left(n^{1010}\right)^2=n^{2020}< n^{2020}+1=\left(n^{1010}+1\right)^2-2n^{1010}< \left(n^{1010}+1\right)^2\)

Vì \(n^{2020}+1\)nằm ở giữa 2 số chính phương liên tiếp là \(\left(n^{1010}\right)^2\)và \(\left(n^{1010}+1\right)^2\)nên không thể là số chính phương.

2/ Mình xin sửa đề là 1 tí đó là tìm \(n\inℤ\)để A là số chính phương nha bạn, vì A hoàn toàn có thể là số chính phương

\(A>n^4+2n^3+n^2=\left(n^2+n\right)^2,\forall n\inℤ\)

\(A< n^4+n^2+9+2n^3+6n^2+6n=\left(n^2+n+3\right)^2,\forall n\inℤ\)

Vì A bị kẹp giữa 2 số chính phương là \(\left(n^2+n\right)^2,\left(n^2+n+3\right)^2\)nên A là số chính phương khi và chỉ khi:

+) \(A=\left(n^2+n+1\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+1+2n^3+2n^2+2n\)

\(\Leftrightarrow n^2+n-6=0\Leftrightarrow\orbr{\begin{cases}n=2\\n=-3\end{cases}}\)

+) \(A=\left(n^2+n+2\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+4+2n^3+4n^2+4n\)

\(\Leftrightarrow3n^2+3n-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{5}}{2}\notinℤ\)---> Với n=-3;2 thì A là số chính phương.

3/ Bằng phản chứng giả sử \(n^3+1\)là số chính phương:

---> Đặt: \(n^3+1=k^2,k\inℕ^∗\Rightarrow n^3=k^2-1=\left(k-1\right)\left(k+1\right)\)

Vì n lẻ nên (k-1) và (k+1) cùng lẻ ---> 2 số lẻ liên tiếp luôn nguyên tố cùng nhau

Lúc này (k-1) và (k+1) phải là lập phương của 2 số tự nhiên khác nhau

---> Đặt: \(\hept{\begin{cases}k-1=a^3\\k+1=b^3\end{cases},a,b\inℕ^∗}\)

Vì \(k+1>k-1\Rightarrow b^3>a^3\Rightarrow b>a\)---> Đặt \(b=a+c,c\ge1\)

Có \(b^3-a^3=\left(k+1\right)-\left(k-1\right)\Leftrightarrow\left(a+c\right)^3-a^3=2\Leftrightarrow3ca^2+3ac^2+c^3=2\)

-----> Quá vô lí vì \(a,c\ge1\Rightarrow3ca^2+3ac^2+c^3\ge7\)

Vậy mâu thuẫn giả thiết ---> \(n^3+1\)không thể là số chính phương với n lẻ.

11 tháng 1 2018

Đề phải cho x thuộc Z chứ bạn 

Xét : x^5-x = x.(x^4-1) = x.(x^2-1).(x^2+1) = (x-1).x.(x+1).(x^2+1)

Ta thấy x-1;x;x+1 là 3 số nguyên liên tiếp nên có 1 số chia hết cho 3 => x^5-x chia hết cho 3

=> x^5-x+2 chia 3 dư 2 => x^5-x+2 ko phải là số chính phương ( vì số chính phương chia 3 dư 0 hoặc 1 )

=> ĐPCM

Tk mk nha

Xét \(x^5-x=x\left(x^4-1\right)=x\left(x^2-1\right)\left(x^2+1\right)=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)

Ta thấy x-1, x, x+1 là ba số nguyên liên tiếp 

\(\Rightarrow x\left(x-1\right)\left(x+1\right)⋮3\)

\(\Rightarrow x^5-x⋮3\)

\(\Rightarrow x^5-x+2\equiv2\left(mod3\right)\)

Vậy x5-x+2 không phải số chính phương (do x5-x+2 chia 3 dư 0 và 1) 

16 tháng 8 2015

Gọi 5 số  đó là : a- 2 ; a - 1 ; a ; a + 1 ; a + 2

Tổng Bình phương 5 số là :

     ( a - 2 )^ 2 + ( a- 1 )^2+ a^2 + ( a+ 1 )^2 + ( a+ 2 )^2 

=> a^2 - 4a + 4 + a^2 - 2a + 1 + a^2 + a^2 + 2a + 1 + a^2 + 4a + 4 

= 5a^2 + 10 

= 5 ( a^ 2 + 2 ) chia hết cho 5  (1)

Nhưng 5 ( a^2 + 2 ) không chia hết cho 25 (2)

Từ (1) và (2) => Tổng bình phương 5 số ko là số chính phương 

Gọi 5 STN liên tiếp là n−2;n−1;n;n+1;n+2

Ta có A=(n−2)2+(n−1)2+n2+(n+1)2+(n+2)2

=5n2+10=5(n2+2)

n2 không tận cùng là 3;8=>n2+2 không tận cùng là 5 hoặc 0=>n2+2 không chia hết cho 5

=>5(n2+2) không chia hết cho 25=> A không phải SCP

13 tháng 3 2016

Đặt  \(P=n^6-n^4+2n^3+2n^2\)  thì 

\(n^6-n^4+2n^3+2n^2=n^2\left(n^4-n^2+2n+2\right)=n^2\left[n^2\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\right]\) 

                                             \(=n^2\left(n+1\right)\left(n^3-n^2+2\right)=n^2\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\)

                                             \(=n^2\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n+1\right)\left(n-1\right)\right]\)

                                        \(P=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

Với \(n\in N;\)  \(n>1\), ta có:

  \(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)

  và  \(n^2-2n+2=n^2-2\left(n-1\right)\text{<}n^2\)  

Theo đó, \(\left(n-1\right)^2\text{< }n^2-2n+2\text{< }n^2\) 

Mặt khác, \(\left(n-1\right)^2\)  và  \(n^2\)  là hai số chính phương liên tiếp

Do đó,    \(n^2-2n+2\)  không thể là một số chính phương.

Vậy,  \(P\)  không là số chính phương với mọi   \(n\in N;\)  \(n>1\).

13 tháng 3 2016

Đặt  \(P=n^6-n^4+2n^3+2n^2\)  thì 

\(n^6-n^4+2n^3+2n^2=n^2\left(n^4-n^2+2n+2\right)=n^2\left[n^2\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\right]\)

                                             \(=n^2\left(n+1\right)\left(n^3-n^2+2\right)=n^2\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\)

                                             \(=n^2\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n+1\right)\left(n-1\right)\right]\)

                                        \(P=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

Với \(n\in N;\)  \(n>1\), ta có:

  \(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)

  và  \(n^2>n^2-2\left(n-1\right)=n^2-2n+2\)  

Theo đó,    \(n^2>n^2-2n+2>\left(n-1\right)^2\)

Mặt khác, \(\left(n-1\right)^2\)  và  \(n^2\)  là hai số chính phương liên tiếp

Do đó,    \(n^2-2n+2\)  không thể là một số chính phương.

Vậy,  \(P\)  không là số chính phương với mọi  \(n\in N;\)  và  \(n>1\)