K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 7

Lời giải:
Gọi $d=ƯCLN(3n,3n+1)$

$\Rightarrow 3n\vdots d; 3n+1\vdots d$

$\Rightarrow (3n+1)-3n\vdots d\Rightarrow 1\vdots d\Rightarrow d=1(1)$

Gọi $k=ƯCLN(3n, 5n+3)$

$\Rightarrow 3n\vdots k, 5n+3\vdots k$

$\Rightarrow 3(5n+3)-5.3n\vdots k\Rightarrow 9\vdots k$

$\Rightarrow k\in \left\{1; 3; 9\right\}$

Vậy $3n, 5n+3$ không có cơ sở để khẳng định là 2 số nguyên tố cùng nhau.

16 tháng 11 2015

tick cho mình rồi mình lm cho

6 tháng 11 2017

Gọi ƯCLN của 3n+1 và 5n+2 là d(d thuộc N sao)

=> 3n+1 và 5n+2 đều chia hết cho d 

=> 2.(3n+1) và 5n+2 đều chia hết cho d 

=> 6n+2 và 5n+2 đều chia hết cho d

=> 6n+2-5n-2 chia hết cho d hay n chia hết cho d => 3n chia hết cho d

Mà 3n+1 chia hết cho d => 3n+1-3n chia hết cho d hay 1 chia hết cho d

=> d = 1 (vì d thuộc N sao)

=> 3n+1 và 5n+2 là 2 số nguyên tố cùng nhau (ĐPCM)

6 tháng 11 2017

Bn đưa về 15n rồi tính!

15 tháng 11 2017

Gọi d là UCLN(5n+3;3n+2)

=> 5n+3\(⋮\)d <=> 15n+9\(⋮\)d

=> 3n+2\(⋮\)d<=> 15n+10 \(⋮\)d

=> 15n+10-15n-9\(⋮\)d<=>1\(⋮\)d=> d=1

d=1=> 5n+3 VÀ 3N+2  LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU

15 tháng 11 2017

Gọi UCLN(5n+3;3n+2) là d

Ta có

5n+3 chia hết cho d => 15n+9 chia hết cho d

3n+2 chia hết cho d=> 15n+10 chia hết cho d

=>(15n+10)-(15n+9) chia hết cho d

=> 15n+10-15n-9=1 chia hết cho d

=> d thuộc Ư(1)=> d=1

=> UCLN(5n+3;3n+2)=1=> 5n+3 và 3n+2 nguyên tố cùng nhau

26 tháng 10 2021

a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)

Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau

4 tháng 11 2023

Ko hiểu ????

4 tháng 11 2023

a)nếu 2n+1 và 3n+2 là các số  nguyên tố cùng nhau thì chúng phải có ƯCLN =1 

giả sử ƯCLN(2n+1,3n+2)=d

=>2n+1 chia hết cho d ,  3n+2 chia hết cho d 

=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d

=>6n+3 chia hết cho d, 6n +4 chia hết cho d

=>(6n+4)  - (6n+3) chia hết cho d

=>6n+4-6n-3=1 chia hết cho d

=>d=1

vậy ƯCLN(2n+1,3n+2)=1 (đpcm)

đpcm là điều phải chứng minh

21 tháng 12 2015

Câu hỏi tương tự nhé bạn ! 
UCLN = 7 
Tick mình nha

27 tháng 10 2023

a: Gọi d=ƯCLN(6n+5;2n+1)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)

=>\(2⋮d\)

mà 2n+1 là số lẻ

nên d=1

=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(3n+2;5n+3)

=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

=>\(15n+10-15n-9⋮d\)

=>\(1⋮d\)

=>d=1

=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau