Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN của 3n+1 và 5n+2 là d(d thuộc N sao)
=> 3n+1 và 5n+2 đều chia hết cho d
=> 2.(3n+1) và 5n+2 đều chia hết cho d
=> 6n+2 và 5n+2 đều chia hết cho d
=> 6n+2-5n-2 chia hết cho d hay n chia hết cho d => 3n chia hết cho d
Mà 3n+1 chia hết cho d => 3n+1-3n chia hết cho d hay 1 chia hết cho d
=> d = 1 (vì d thuộc N sao)
=> 3n+1 và 5n+2 là 2 số nguyên tố cùng nhau (ĐPCM)
Gọi d là UCLN(5n+3;3n+2)
=> 5n+3\(⋮\)d <=> 15n+9\(⋮\)d
=> 3n+2\(⋮\)d<=> 15n+10 \(⋮\)d
=> 15n+10-15n-9\(⋮\)d<=>1\(⋮\)d=> d=1
d=1=> 5n+3 VÀ 3N+2 LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
Gọi UCLN(5n+3;3n+2) là d
Ta có
5n+3 chia hết cho d => 15n+9 chia hết cho d
3n+2 chia hết cho d=> 15n+10 chia hết cho d
=>(15n+10)-(15n+9) chia hết cho d
=> 15n+10-15n-9=1 chia hết cho d
=> d thuộc Ư(1)=> d=1
=> UCLN(5n+3;3n+2)=1=> 5n+3 và 3n+2 nguyên tố cùng nhau
a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau
a)nếu 2n+1 và 3n+2 là các số nguyên tố cùng nhau thì chúng phải có ƯCLN =1
giả sử ƯCLN(2n+1,3n+2)=d
=>2n+1 chia hết cho d , 3n+2 chia hết cho d
=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d
=>6n+3 chia hết cho d, 6n +4 chia hết cho d
=>(6n+4) - (6n+3) chia hết cho d
=>6n+4-6n-3=1 chia hết cho d
=>d=1
vậy ƯCLN(2n+1,3n+2)=1 (đpcm)
đpcm là điều phải chứng minh
a: Gọi d=ƯCLN(6n+5;2n+1)
=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)
=>\(2⋮d\)
mà 2n+1 là số lẻ
nên d=1
=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(3n+2;5n+3)
=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
=>\(15n+10-15n-9⋮d\)
=>\(1⋮d\)
=>d=1
=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau
Lời giải:
Gọi $d=ƯCLN(3n,3n+1)$
$\Rightarrow 3n\vdots d; 3n+1\vdots d$
$\Rightarrow (3n+1)-3n\vdots d\Rightarrow 1\vdots d\Rightarrow d=1(1)$
Gọi $k=ƯCLN(3n, 5n+3)$
$\Rightarrow 3n\vdots k, 5n+3\vdots k$
$\Rightarrow 3(5n+3)-5.3n\vdots k\Rightarrow 9\vdots k$
$\Rightarrow k\in \left\{1; 3; 9\right\}$
Vậy $3n, 5n+3$ không có cơ sở để khẳng định là 2 số nguyên tố cùng nhau.