Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/5^3+1/6^3+...+1/2023^3
1/5^3<1/4*5*6
Xét tương tự, ta đều sẽ được:
\(\dfrac{1}{n^3}< \dfrac{1}{n\left(n-1\right)\left(n+1\right)}\)
=>\(A< \dfrac{1}{4\cdot5\cdot6}+\dfrac{1}{5\cdot6\cdot7}+...+\dfrac{1}{2022\cdot2023\cdot2024}\)
=>\(A< \dfrac{1}{2}\left(\dfrac{2}{4\cdot5\cdot6}+\dfrac{2}{5\cdot6\cdot7}+...+\dfrac{2}{2022\cdot2023\cdot2024}\right)\)
=>\(A< \dfrac{1}{2}\left(\dfrac{1}{4\cdot5}-\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}-\dfrac{1}{7\cdot8}+...+\dfrac{1}{2022\cdot2023}-\dfrac{1}{2023\cdot2024}\right)\)
=>A<1/40
Ta có BĐT: \(\dfrac{1}{k\left(k+1\right)\left(k+2\right)}< \dfrac{1}{k^3}< \dfrac{1}{\left(k-1\right)\cdot k\cdot\left(k+1\right)}\)
Do đó, ta được:
\(\dfrac{1}{5\cdot6\cdot7}+\dfrac{1}{6\cdot7\cdot8}+...+\dfrac{1}{2023\cdot2024\cdot2025}< A\)
\(\Leftrightarrow A>\dfrac{1}{2}\left(\dfrac{1}{5\cdot6}-\dfrac{1}{2024\cdot2025}\right)>\dfrac{1}{2}\left(\dfrac{1}{30}-\dfrac{1}{390}\right)=\dfrac{1}{65}\)
=>1/65<A<1/40
6:
\(4D=2^2+2^4+...+2^{202}\)
=>3D=2^202-1
hay \(D=\dfrac{2^{202}-1}{3}\)
7: \(=\dfrac{1}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{32}{99}=\dfrac{16}{99}\)
chắc h có mấy thành cay r nên ko làm bn lên mạng tải phẩn mêm có cánh iair đó :D
Chữa lại đề.Bạn xem lại đề xem đúng chưa nhé!
\(D=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}+\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}+\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}+\dfrac{3}{2004}}\)
\(D=\dfrac{1.\left(\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}\right)}{5.\left(\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}\right)}-\dfrac{2.\left(\dfrac{1}{2002}+\dfrac{1}{2003}+\dfrac{1}{2004}\right)}{3\left(\dfrac{1}{2002}+\dfrac{1}{2003}+\dfrac{1}{2004}\right)}\)
\(D=\dfrac{1}{5}-\dfrac{2}{3}\)
\(D=-\dfrac{7}{15}\)
Cái này học lâu rồi.Bạn xem lại xem mình làm đúng chưa nhé!
Ta có: \(n^3-n< n^3\forall n\)
mà: \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
Nên: \(\left(n-1\right)n\left(n+1\right)< n^3\Leftrightarrow\dfrac{1}{\left(n-1\right)n\left(n+1\right)}>\dfrac{1}{n^3}\)
Trở lại bài toán:
\(SV=\dfrac{1}{5^3}+\dfrac{1}{6^3}+\dfrac{1}{7^3}+...+\dfrac{1}{2004^3}< \dfrac{1}{\left(5-1\right).5.\left(5+1\right)}+\dfrac{1}{\left(6-1\right).6.\left(6+1\right)}+\dfrac{1}{\left(7-1\right).7.\left(7+1\right)}+...+\dfrac{1}{\left(2004-1\right).2004.\left(2004+1\right)}\)
\(SV< \dfrac{1}{4.5.6}+\dfrac{1}{5.6.7}+\dfrac{1}{6.7.8}+...+\dfrac{1}{2003.2004.2005}=\dfrac{1}{2}\left(\dfrac{1}{4.5}-\dfrac{1}{5.6}+\dfrac{1}{5.6}-\dfrac{1}{6.7}+\dfrac{1}{6.7}-\dfrac{1}{7.8}+...+\dfrac{1}{2003.2004}-\dfrac{1}{2004.2005}\right)=\dfrac{1}{2}\left(\dfrac{1}{4.5}-\dfrac{1}{2004.2005}\right)=\dfrac{1}{2.4.5}-\dfrac{1}{2.2004.2005}=\dfrac{1}{40}-\dfrac{1}{2.2004.2005}< \dfrac{1}{40}\left(đpcm\right)\)