Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)
1:
\(n^2+4n+3\)
\(=n^2+3n+n+3\)
\(=\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=4\left(k+1\right)\left(k+2\right)\)
Vì k+1;k+2 là hai số nguyên liên tiếp
nên \(\left(k+1\right)\left(k+2\right)⋮2\)
=>\(4\left(k+1\right)\left(k+2\right)⋮8\)
hay \(n^2+4n+3⋮8\)
2: \(n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=2k\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)
=>\(k\left(k+1\right)\left(k+2\right)⋮6\)
=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)
hay \(n^3+3n^2-n-3⋮48\)
cần rất gấp
mọi người giúp mình ha:))
mình sẽ k cho ai trả lời nhanh và đúng nhất
b) \(n^3+3n^2-n-3=n\left(n^2-1\right)+3\left(n^2-1\right)=\left(n^2-1\right)\left(n+3\right)\)
Vì lẻ2=lẻ; lẻ + lẻ= chẵn; lẻ-1=chẵn; chẵn x chẵn =chẵn
=> (n2-1)(n+3) chia hết cho 48
bài toán dễ thôi nhưng em nên hiểu lấy bản chất dạng bài để làm các bài tương tự thế này:
nếu gọi tổng bên trái là A thì A chia hết cho 8 khi A ít nhất là A chia hết cho 4 và A phải là số chẵn.đấy là điều kiện cần,còn điều kiện bắt buộc thì A phải chia hết cho 8,hay bội số cua 8.
Đặt n=2k+1 với k thuộc Z
A=(2k+1)^2+4(2k+1)+5=4k^2+12k+10=
(2k+3)^2+1
ta biết 1 số bình phương chia cho 8 thì dư 1 hoặc 3(bạn nên chứng minh thêm bài toán phụ này)
khi đó A chia 8 sẽ dư 2 hoăc 4,suy ra đpcm
bài toán dễ thôi nhưng em nên hiểu lấy bản chất dạng bài để làm các bài tương tự thế này:
nếu gọi tổng bên trái là A thì A chia hết cho 8 khi A ít nhất là A chia hết cho 4 và A phải là số chẵn.đấy là điều kiện cần,còn điều kiện bắt buộc thì A phải chia hết cho 8,hay bội số cua 8.
Đặt n=2k+1 với k thuộc Z
A=(2k+1)^2+4(2k+1)+5=4k^2+12k+10=
(2k+3)^2+1
ta biết 1 số bình phương chia cho 8 thì dư 1 hoặc 3(bạn nên chứng minh thêm bài toán phụ này)
khi đó A chia 8 sẽ dư 2 hoăc 4,suy ra đpcm
a, A= (n+2)^2 + 1
Vì số cp chia 8 dư 0 hoặc 1 hoặc 4 => A=(n+2)^2 + 1 chia 8 dư 1 hoặc 2 hoặc 5
=> A ko chia hết cho 8
b, n lẻ nên n có dạng 2k+1(k thuộc N)
<=> 5^n = 5^2k+1= = 5^2k . 5 = (4+1)^2k . 5 = (Bội của 4 +1) . 5 = Bội của 4 +5 chia 4 dư 1
=> B = 5^n - 1 chia hết cho 4
\(n^2+4n+3=n^2+n+3n+3=n\left(n+1\right)+3\left(n+1\right)=\left(n+3\right)\left(n+1\right)\)
vì n là số lẻ \(\Rightarrow\left(n+1\right)\left(n+3\right)\) là 2 số chẵn liên tiếp
mà tích cua 2 số chẵn liên tiếp luôn chia hết cho 8 \(\Rightarrow\)\(n^2+4n+3\) chia hết cho \(8\)
ok vĩ đại thiệt giải hay