K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

14 tháng 8 2016

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6

26 tháng 11 2021

A) Vì 2013 là số lẻ nên (\(1^{2013}+2^{2013}\)+....\(n^{2013}\)): (1+2+...+n)

Hay( \(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)) :\(\dfrac{n\left(n+1\right)}{2}\)

=>2(\(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)):n(n+1)(đpcm)

B)

Do 1 lẻ , \(2q^2\) chẵn nên p lẻ

p2−1⇔\(2q^2\)(p−1)(p+1)=\(2q^2\)

p lẻ nên p−1 và p+1đều chẵn ⇒(p−1)(p+1)⋮4

\(q^2\):2 =>q:2 =>q=2 

\(q^2\)=2.2\(^2\)+1=9=>q=3

 Chắc đúng vì hôm trước cô mik giải thik v 
26 tháng 11 2021

a, Vì 2013 là số lẻ nên (\(^{1^{2013}+2^{2013}+...n^{2013}}\))⋮(1+2+...+n)

=>\(\left(1^{2013}+2^{2013}+...+n^{2013}\right)\)\(\dfrac{n\left(n+1\right)}{2}\)

=>\(2\left(1^{2013}+2^{2013}+...+n^{2003}\right)\)⋮n(n+1)

đpcm

15 tháng 1 2018

M = [(n+1)^2+4]^2-(n+1)2+2012

Đặt (n+1)^2 = a ( a >= 0 )

Khi đó : 

M = (a+4)^2-a+2012

    = a^2+8a+16-a+2012

    = a^2+7a+2028

    = a^2+a+6a+2028

Xét : a^2+a = (n^2+2n+1)^2-(n^2+2n+1) = (n^2+2n+1).(n^2+2n) = n.(n+1)^2.(n+2)

Ta thấy n;n+1;n+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

=> a^2+a chia hết cho 6

Mà 6a và 2028 đều chia hết cho 6

=> M chia hết cho 6

Tk mk nha

16 tháng 8 2018

8 phút trước (09:39)

Bạn có muốn biết nơi nào bạn sẽ vừa HỌC vừa KIẾM TIỀN được không?

BÀI TẬP KHÓ?
CÓ ALFAZI
Năm học mới rồi, các bạn bè các anh chị hỗ trợ bài tập, hướng dẫn học tập, cuối năm đạt kết quả tốt? ✅Bạn không có ai để làm điều đó
Truy cập: https://alfazi.edu.vn để trao đổi bài tập, chia sẻ tài liệu và tham gia hoạt động bổ ích cho học sinh, sinh viên nhé!
Đặc biệt, khi bạn tham gia giải đáp bài tập, bạn sẽ nhận được “phụ cấp” siêu khủng từ Web!
Một web học tập rất thân thiện, môi trường học tập cực tốt, Các bạn đừng bỏ phí cơ hội này nhé!
Web rất hân hạnh được đón tiếp những tài năng tương lai của đất nước!
❤️❤️😘😘😘Love you💋💋

TRUY CẬP HTTPS://ALFAZI.EDU.VN ĐỂ NHẬN 20.000 SAU KHI ĐĂNG KÍ!

27 tháng 3 2022

tra gút gồ đe=))

27 tháng 3 2022

lười

7 tháng 7 2019

1) Đặt A = n6 - 1 = ( n3 - 1)( n3 + 1) = ( n - 1)( n2 + n + 1)( n +1)(n2 - n + 1)

Nếu n không chia hết cho 7 thì:

Xét nếu n = 7k + 1 thì n - 1 = 7k + 1 - 1 = 7k chia hết cho 7 nên A chia hết cho 7

Nếu n = 7k + 2 thì n2 + n + 1 = (7k + 2)2 + 7k + 2 + 1 = 7(7k2 +3k+1) chia hết cho 7 nên A chia hết cho 7

Tương tự đến trường hợp n = 7k + 6

=> Nếu n không chia hết cho 7 thì n6 - 1 chia hết cho 7

Mà n6 - 1 = (n3 - 1)(n3 + 1)

Do đó: n3 - 1 chia hết cho 7 hoặc n3 - 1 chia hết cho 7

7 tháng 7 2019

3) n(n + 1)(2n + 1)

= n(n + 1)[(n + 2) + (n - 1)]

= n(n + 1)(n + 2) + n(n + 1)(n - 1)

Vì n(n + 1)(n + 2) là tích của ba số tự nhiên liên tiếp

Nên n(n + 1)(n + 2) chia hết cho 6 (1)

Vì n(n + 1)(n - 1) là tích của 3 số tự nhiên liên tiếp

Nên n(n + 1)(n - 1) chia hết cho 6 (2)

Từ (1), (2) => Đpcm

29 tháng 7 2016

xét số dư n khi chia cho 7 là 1,2,3,4,5 hoặc 6 (do n không chia hết cho 7 )
=>số dư của \(n^3\)khi chia cho 7 lần lượt là 1,6
nếu dư 1=>n^3-1 chia hết cho 7
nếu dư 6=> n^3+1 chia hết cho 7
p/s : bài này bạn dùng đồng dư cũng đc -_-

29 tháng 7 2016

Gọi n=7x+a

n^3=(7x+a)^3, a=[1,2,3,4,5,6], x€Z vì n không chia hết cho 7

Khai hằng đẳng thức (7x+a)^3= ...+a^3

Những số kia chia hết cho 7 nên ta chỉ  xét a^3

Ta thay thế lần lượt a=1,..,6

Ta chứng minh đựợc a^3-1 hoặc a^3+1 sẽ chia hết cho 7.