Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử f(n) là số chính phương với mọi n nguyên dương
Đặt \(f\left(n\right)=n^3+On^2+Ln+M\)
Suy ra \(f\left(1\right)=1+O+L+M\);\(f\left(2\right)=8+4O+2L+M\);\(f\left(3\right)=27+9O+3L+M\);\(f\left(4\right)=64+16O+4L+O\) đều là số chính phương.
Mà \(f\left(4\right)-f\left(2\right)\equiv2L\left(mod4\right)\) và\(f\left(4\right)-f\left(2\right)\equiv0,1,-1\left(mod4\right)\)(do \(f\left(4\right),f\left(2\right)\)đều là số chính phương)
Do đó= \(2L\equiv0\left(mod4\right)\)
Suy ra \(2L+2\equiv2\left(mod4\right)\)
Mặt khác \(f\left(3\right)-f\left(1\right)\equiv2L+2\left(mod4\right)\)
=>Mâu thuẫn với điều giả sử (do \(f\left(3\right)-f\left(1\right)\equiv0,1,-1\left(mod4\right)\))
=>Đpcm
Vậy luôn tồn tại n nguyên dương sao cho \(f\left(n\right)=n^3+On^2+Ln+M\)không phải là số chính phương.
Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
Đặt : \(n^2+3n=k\)\(\Rightarrow A=k\left(k+2\right)=k^2+2k\)
Ta có : \(\left(k+1\right)^2=\left(k+1\right)\left(k+1\right)\)
\(=k\left(k+1\right)+1\left(k+1\right)\)
\(=k^2+k+k+1=k^2+2k+1\)
Do : \(n\inℕ^∗\Rightarrow n^2+3n>0\)hay : \(k>0\)
\(\Rightarrow k^2+2k>k^2\)
Ta có : \(k^2< k^2+2k< k^2+2k+1\)
hay : \(k^2< k^2+2k< \left(k+1\right)^2\)
Do : \(k^2\)và \(\left(k+1\right)^2\)là hai số chính phương liên tiếp
\(\Rightarrow k^2+2k\)không phải là số chính phương
mik làm thế này có đúng không nhỉ ? mai mik phải nộp cho thầy òi
a) Ta có :
abab = ab . 101
Để abab là số chính phương thì ab chỉ có thể bằng 101.
Mà ab là số có hai chữ số
=> abab không phải là số chính phương
b) Ta có :
abcabc = abc . 1001
Để abcabc là số chính phương thì abc chỉ có thể bằng 1001.
Mà abc là số có 3 chữ số
=> abcabc không phải là số chinh phương
c) Ta có :
ababab = ab . 10101
Để ababab là số chính phương thì ab chỉ có thể bằng 10101.
Mà ab là số có hai chữ số.
=> ababab không phải là số chính phương.
Kết luận : abab ; abcabc ; ababab ko phải là số chính phương (đpcm)
Bài 1:
a ) Ta có : A là tổng các số hạng chia hết cho 3 => A \(⋮\)3
A có 3 không chia hết cho 9 => A không chia hết cho 9
=> A \(⋮\)3 nhưng không chia hết cho 9
=> A không phải là số chính phương
Bài 2:
Gọi 2 số lẻ có dạng 2k+1 và 2q+1 (k,q thuộc N)
Có : A = (2k+1)^2+(2q+1)^2
= 4k^2+4k+1+4q^2+4q+1
= 4.(k^2+k+q^2+q)+2
Ta thấy A chia hết cho 2 nguyên tố
Lại có : 4.(q^2+q+k^2+k) chia hết cho 4 mà 2 ko chia hết cho 4 => A ko chia hết cho 4
=> A chia hết cho 2 nguyên tố mà A ko chia hết cho 4 = 2^2
=> A ko là số chính phương
=> ĐPCM
A=1+919+99199+19991999 = 1+B(3)+B(3)+(1998+1)1999 = 1+B(3)+B(3)+1= B(3)+2= 3k+2 (k thuộc N)
Mà ko có số chính phương nào chia 3 dư 2
Nên A ko phải số chính phương
( B(3) tức là bội của 3)