Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x-y\right)^2\left(z^2-2z+1\right)-2\left(z-1\right)\left(x-y\right)^2+\left(x-y\right)^2\)
\(A=\left(x-y\right)^2\left(z-1\right)^2-2\left(x-y\right)\left(z-1\right)\left(x-y\right)+\left(x-y\right)^2\)
\(A=\left[\left(x-y\right)\left(z-1\right)-\left(x-y\right)\right]^2\ge0\) \(\forall x,y,z\)
Mysterious Person, Phùng Khánh Linh, DƯƠNG PHAN KHÁNH DƯƠNG, Aki Tsuki, Yukru, Nhã Doanh, nguyễn viết hoàng, Dũng Nguyễn, Tạ Thị Diễm Quỳnh, Tuyen,Bùi Mạnh Khôi , Arakawa Whiter, TRẦN MINH HOÀNG,...
Ta có \(A=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\)
\(=>A=x^3z-x^3y^2+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)
\(=>A=\left(x^3z-xyz\right)+\left(x^2y^2z^2-x^3y^2\right)-\left(y^3z^2-y^3x\right)-\left(z^3x^2-z^3y\right)\)
\(=>A=x^2y^2\left(z^2-x\right)+xz\left(x^2-y\right)-y^3\left(z^2-x\right)-z^3\left(x^2-y\right)\)(1)
Thay \(x^2-y=a , z^2-x=c\) Vào (1) ta có \(A=cx^2y^2+axz-cy^3-az^3\)
\(=>A=cy^2\left(x^2-y\right)-az\left(z^2-x\right)\)(2)
Thay \(x^2-y=a , z^2-x=c\) vào (2) ta có \(A=acy^2-acz=ac\left(y^2-z\right)\)(3)
Thay \(y^2-z=b\) vào ta có \(A=abc\)
Vậy giá trị của biểu thức A ko phụ thuộc vào biến x,y,z .
a)
\(\begin{array}{l}A = 0,2\left( {5{\rm{x}} - 1} \right) - \dfrac{1}{2}\left( {\dfrac{2}{3}x + 4} \right) + \dfrac{2}{3}\left( {3 - x} \right)\\A = x - 0,2 - \dfrac{1}{3}x - 2 + 2 - \dfrac{2}{3}x\\ = \left( {x - \dfrac{1}{3}x - \dfrac{2}{3}x} \right) + \left( {\dfrac{{ - 1}}{2} - 2 + 2} \right)\\ = - \dfrac{1}{2}\end{array}\)
Vậy \(A = - \dfrac{1}{2}\) không phụ thuộc vào biến x
b)
\(\begin{array}{l}B = \left( {x - 2y} \right)\left( {{x^2} + 2{\rm{x}}y + 4{y^2}} \right) - \left( {{x^3} - 8{y^3} + 10} \right)\\B = \left[ {x - {{\left( {2y} \right)}^3}} \right] - {x^3} + 8{y^3} - 10\\B = {x^3} - 8{y^3} - {x^3} + 8{y^3} - 10 = - 10\end{array}\)
Vậy B = -10 không phụ thuộc vào biến x, y.
c)
\(\begin{array}{l}C = 4{\left( {x + 1} \right)^2} + {\left( {2{\rm{x}} - 1} \right)^2} - 8\left( {x - 1} \right)\left( {x + 1} \right) - 4{\rm{x}}\\{\rm{C = 4}}\left( {{x^2} + 2{\rm{x}} + 1} \right) + \left( {4{{\rm{x}}^2} - 4{\rm{x}} + 1} \right) - 8\left( {{x^2} - 1} \right) - 4{\rm{x}}\\C = 4{{\rm{x}}^2} + 8{\rm{x}} + 4 + 4{{\rm{x}}^2} - 4{\rm{x}} + 1 - 8{{\rm{x}}^2} + 8 - 4{\rm{x}}\\C = \left( {4{{\rm{x}}^2} + 4{{\rm{x}}^2} - 8{{\rm{x}}^2}} \right) + \left( {8{\rm{x}} - 4{\rm{x}} - 4{\rm{x}}} \right) + \left( {4 + 1 + 8} \right)\\C = 13\end{array}\)
Vậy C = 13 không phụ thuộc vào biến x
\(=-\frac{\left(x^2+y^2\right)^4}{\left(x^2+y^2\right)^2}-\frac{4\left(x^2+y^2\right)^3}{\left(x^2+y^2\right)^2}-\frac{5\left(x^2+y^2\right)^2}{\left(x^2+y^2\right)^2}=-\left(x^2+y^2\right)^2-4\left(x^2+y^2\right)-5\)
\(=-1-\left(\left(x^2+y^2\right)^2+4\left(x^2+y^2\right)+4\right)=-1-\left(x^2+y^2+2\right)^2\le-1< 0\forall x\left(đpcm\right).\)