K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2023

SOS CẦN GẤP

 

24 tháng 12 2023

CMR là j hả bn

12 tháng 2 2016

Trong câu hỏi tương tự có rất nhiều bài giải về câu hỏi này . Bạn có thể tham khảo các cách giải trong đó nha .

12 tháng 2 2016

 bạn nhấn vào đây

Cho 10 số tự nhiên bất kì :a1;a2;a3;...;a10.Chứng minh rằng thế nào cũng có một số hoặc tổng các số liên tiếp nhau trong dãy trên chia hết cho 10

8 tháng 11 2018

Bài 1:

 Các đại biểu tương ứng với 6 điểm A, B, C, D, E, F. Hai đại biểu X và Y nào đó mà quen nhau thì ta tô đoạn thẳng XY bằng màu xanh còn nếu X vá Y không quen nhau thì tô đoạn XY màu đỏ.

    Xét 5 đoạn thẳng AB, AC, AD, AE, AF: Theo nguyên tắc Dirichlet thì tồn tại ba đoạn cùng màu. Giả sử AB, AC, AD màu xanh. Xét ba điểm B, C, D: vì 3 đại biểu nào cũng có hai người quen nhau suy ra một trong ba đoạn BC, CD, DB màu xanh.

     Giả sử BC màu xanh thì A, B, C đôi một quen nhau.

     Còn nếu AB, AC, AD màu đỏ thì B, C, D đôi một quen nhau.

8 tháng 11 2018

Theo nguyên lý Di-rich-le ta suy ra: Tồn tại hai số trong 20 số khi chia cho 19 có cùng số dư. Suy ra hiệu của hai số đó chia hết cho 19.

Giả sử 10n, 10m là hai số có cùng số dư khi chia cho 19 (1 ≤ n < m ≤ 20).

  • 10m – 10n ⋮ 19
  • 10n.(10m-n – 1) ⋮ 19, mà 10n không chia hết cho 19 nên suy ra:

10m-n – 1 ⋮ 19

  • 10m-n – 1 = 19k (k ∈ N)
  • 10m-n = 19k + 1 (đpcm).
26 tháng 1 2019

Nếu có 2 số cùng số dư khi chia cho 100 ta có dpcm. Giả sử không có 2 số nào cùng số dư khi chia cho 100. Khi đó có ít nhất 51 số khi chia cho 100 có số dư khác 50 là a1,a2,...,a51

đặt bi=−ai (1≤i≤51). Xét 102 số ai và bi. Theo Dirichlet thì tồn tại i≠j sao cho ai≡bj (mod 100). Suy ra 

26 tháng 1 2019
Chia 52 số nguyên tùy ý cho 100, ta có thể có các số dư từ 0, 1, 2, …, 99. Ta phân các số dư thành các nhóm sau: {0}; {1, 99}; …, {49, 51}, {50}. Ta có tất cả 51 nhóm và khi chia 52 số cho 100 ta có 52 số dư. Theo nguyên lí Dirichlet sẽ có 2 số dư cùng thuộc một nhóm. Ta có hai trường hợp:Trường hợp 1: Hai số dư giống nhau, suy ra hiệu hai số có hai số dư tương ứng đó sẽ chia hết cho 100Trường hợp 2: Hai số dư khác nhau, suy ra tổng của hai số có hai số dư tương ứng đó sẽ chia hết cho 100
8 tháng 12 2015

BA SO TU NHIEN bat ki thuoc hai dang chan va le 

theo nguyen li dirich le thi se co it nhat hai so co cung dang chia het cho 2

=>trong 7 so tu nhien thi se co hai so chia het cho 2

ta goi hai so la a1 va a2

=>a1+a2 chia het cho 2=>a1+a2=2k

con lai 5so tuong tu ta lai co 2 so co tong chia het cho hai dat la a3 va a4

=>a3+a4 =2q

con lai ba so ta lai duoc hai so co tong chia het cho 2 dat la a5 va a6

=> a5 +a6=2n

vay ......................