Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do các số chia 3 chỉ có thể có các số dư là 0,1,2
Giả sử không có số nào (hoặc bộ vài số nào) có tổng chia hết cho 3
Do các số đều ko chia hết cho 3 nên chúng chia 3 chỉ có thể dư 1 hoặc 2
Theo nguyên lý Dirichlet, trong 5 số luôn có ít nhất \(\left[\dfrac{5}{2}\right]+1=3\) số có cùng số dư khi chia 3
Giả sử bộ 3 số cùng số dư khi chia 3 là \(a_1;a_2;a_3\Rightarrow a_1+a_2+a_3⋮3\) (mâu thuẫn giả thiết ko có bộ số nào chia hết cho 3)
Vậy điều giả sử là sai hay luôn có 1 hoặc vài số có tổng chia hết cho 3
Xét \(n=2k+1\)
\(\Rightarrow A=3^{2k+1}+1=3.9^k+1\)
Ta có: \(9^k\) chia cho 5 dư - 1 hoặc 1
\(\Rightarrow3.9^k\)chia 5 dư - 3 hoặc 3
\(\Rightarrow3.9^k+1\)chia 5 dư - 2 hoặc 4
\(\Rightarrow A\) không chia hết cho 5 nên A không chia hết cho \(10^{2016}\)
Xét \(n=2k\)
\(\Rightarrow A=3^{2k}+1=3^{2k}+1\)
Vì \(3^{2k}\)là số chính phương nên chia cho 4 dư 0 hoặc 1.
\(\Rightarrow A=3^{2k}+1\)chia cho 4 dư 1 hoặc 2.
\(\Rightarrow A\)không chia hết cho 4 nên A không chia hết cho \(10^{2016}\)
Ta có (a1 + a2 + ...+a2016)3 = 20166051
<=> a13 + a23 +...+ a20163 + 3A = 20166051
Vì 20166051 và 3A chia hết cho 3 nên a13 + a23 +...+ a20163 chia hết cho 3
tìm x,y,z nguyên tố thỏa \(x^3+y^3=2z^3\)