Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai nhé bạn.
2n+1 không thể là ước của 3n+4 và đề cho là ucln của 3n+4 ???
Sửa đề r mình giải cho
Ai bt Địa ko giải hộ mìk ạ chiều mình thi rồi T.T
Câu 1 : Hãy thử suy đoán xem nhiệt độ ngày đêm sẽ diễn biến ntn , nếu giả sử Trái đất :
a) Quay chậm lại 24h thành 36h
b) Quay nhanh hơn 24h thành 36h
c) Ngừng quay
Ai nhanh mik giúp mìh vs ạ ...
Đặt ƯCLN (2n + 1; 6n + 5) = d
Ta có: \(2n+1⋮d\Rightarrow6n+3⋮d\)
Mà \(6n+5⋮d\)
\(\Rightarrow6n+5-\left(6n+3\right)⋮d\)
\(\Rightarrow2⋮d\)
Mặt khác, ta lại có: 2n + 1 và 6n + 5 là các số lẻ => d = 1.
Vậy (2n + 1; 6n + 5)=1
Gọi d ∈ ƯC (2n - 1, 9n + 4) ⇒ 2(9n + 4) - 9(2n - 1) ⋮ d ⇒ 17 ⋮ d ⇒ d ∈ {1, 17}.
Ta có 2n - 1 ⋮ 17 ⇔ 2n - 18 ⋮ 17 ⇔ 2(n - 9) ⋮ 17 ⇔ n - 9 ⋮ 17 ⇔ n = 17k + 9 (k ∈N).
Nếu n = 17k + 9 thì 2n - 1 ⋮ 17, và 9n + 4 = 9(17k + 9) + 4 = bội 17 + 85 ⋮ 17, do đó (2n - 1, 9n + 4) = 17.
Nếu n ≠ 17k + 9 thì 2n - 1 không chia hết cho 17, do đó (2n - 1, 9n + 4) = 1.
Gọi d = ƯCLN(2n - 1; 9n + 4) (d thuộc N*)
=> 2n - 1 chia hết cho d; 9n + 4 chia hết cho d
=> 9.(2n - 1) chia hết cho d; 2.(9n + 4) chia hết cho d
=> 18n - 9 chia hết cho d; 18n + 8 chia hết cho d
=> (18n + 8) - (18n - 9) chia hết cho d
=> 18n + 8 - 18n + 9 chia hết cho d
=> 17 chia hết cho d
=> d thuộc {1 ; 17}
+ Với d = 17 thì 2n - 1 chia hết cho 17; 9n + 4 chia hết cho 17
=> 2n - 1 - 17 chia hết cho 17; 9n + 4 - 85 chia hết cho 17
=> 2n - 18 chia hết cho 17; 9n - 81 chia hết cho 17
=> 2.(n - 9) chia hết cho 17; 9.(n - 9) chia hết cho 17
Mà (2;17)=1; (9;17)=1 => n - 9 chia hết cho 17
=> n = 17.k + 9 (k thuộc N)
Vậy với n = 17.k + 9 (k thuộc N) thì ƯCLN(2n - 1; 9n + 4) = 17
Với n khác 17.k + 9 (k thuộc N) thì ƯCLN(2n - 1; 9n + 4) = 1
Gọi d thuộc ƯC (2n-1,9n+4)suy ra 2(9n+4)-9(2n-1) : d suyra 17 :d suyra d thuộc {1,17}
Gọi d = (2n-1) ;(9n+4) ⇒ 2n-1 ; 9n+4 ⋮ d
⇒ 2 (9n+4) - 9(2n-1) = 18n+8 - 18n+9 = 17 ⋮ d
⇒d=1 hoặc d= 17
Nếu 1 trong 2 số 2n-1 ; 9n+4 ⋮ 17 thì ƯCLN(2n-1;9n+4) = 17
Nếu 1 trong 2 số 2n-1 ; 9n+4 ∅ ⋮ 17 thì ƯCLN (2n-1;9n+4) = 1
Gọi d = (2n-1) ;(9n+4) ⇒ 2n-1 ; 9n+4 ⋮ d
⇒ 2 (9n+4) - 9(2n-1) = 18n+8 - 18n+9 = 17 ⋮ d
⇒d=1 hoặc d= 17
Nếu 1 trong 2 số 2n-1 ; 9n+4 ⋮ 17 thì ƯCLN(2n-1;9n+4) = 17
Nếu 1 trong 2 số 2n-1 ; 9n+4 ∅ ⋮ 17 thì ƯCLN (2n-1;9n+4) = 1
Đặt : ƯCLN(2n+5,2n+4)=d
Ta có: (2n+5)\(⋮\)d và (2n+4) \(⋮\)d
\(\Rightarrow\)(2n+5) - (2n+4)\(⋮\)d
\(\Leftrightarrow\)2n+5 - 2n-4 \(⋮\)d
\(\Leftrightarrow\)5 - 4 \(⋮\)d
\(\Leftrightarrow\)1\(⋮\)d
\(\Leftrightarrow\)d = 1
Vậy: ƯCLN (2n+5,2n+4) = 1(đpcm)
kb vs mk nha