K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2016

Đặt \(A=\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]+\left[\sqrt{4}\right]+...+\left[\sqrt{212041}\right]\)

\(=\left(\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]\right)+\left(\left[\sqrt{4}\right]+...+\left[\sqrt{8}\right]\right)+\left(\left[\sqrt{9}\right]+...+\left[\sqrt{15}\right]\right)+...+\left(\left[\sqrt{210681}\right]+...+\left[\sqrt{211599}\right]\right)+\left(\left[\sqrt{211600}\right]+\left[\sqrt{212041}\right]\right)\)

Theo cách chia nhóm như trên, nhóm 1 có 3 số, nhóm 2 có 5 số, nhóm 3 có 7 số, nhóm 4 có 9 số, ..., nhóm 459 có 919 số, nhóm cuối cùng có 442 số. Các số thuộc nhóm 1 bằng 1, các số thuộc nhóm 2 bằng 2, các số thuộc nhóm 3 bằng 3, ..., các số thuộc nhóm 459 bằng 459, Các số thuộc nhóm cuối cùng bằng 460.

Do đó \(A=1.3+2.5+3.7+...+459.919+460.442\)

            \(=1\left(1.2+1\right)+2.\left(2.2+1\right)+3.\left(3.2+1\right)+...+459.\left(459.2+1\right)+203320\)

            \(=\left(2.1^2+1\right)+\left(2.2^2+1\right)+\left(2.3^2+1\right)+...+\left(2.459^2+1\right)+203320\)

            \(=2.\left(1^2+2^2+3^2+...+459^2\right)+\left(1+2+3+...+459\right)+203320\)

            \(=2.\frac{1}{6}.459.460.919+105570+203320=64988110\)

18 tháng 8 2016

123hehe321

8 tháng 3 2017

4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)

mà 3^6/9-81=0  => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a)

\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right).\\A = \left( {\frac{{30}}{{15}} + \frac{5}{{15}} - \frac{6}{{15}}} \right) - \left( {\frac{{105}}{{15}} - \frac{9}{{15}} - \frac{{20}}{{15}}} \right) - \left( {\frac{3}{{15}} + \frac{{25}}{{15}} - \frac{{60}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} - \left( {\frac{{ - 32}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} + \frac{{32}}{{15}}\\A = \frac{{ - 15}}{{15}}\\A =  - 1\end{array}\)

b)

\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right)\\A = 2 + \frac{1}{3} - \frac{2}{5} - 7 + \frac{3}{5} + \frac{4}{3} - \frac{1}{5} - \frac{5}{3} + 4\\A = \left( {2 - 7 + 4} \right) + \left( {\frac{1}{3} + \frac{4}{3} - \frac{5}{3}} \right) + \left( { - \frac{2}{5} + \frac{3}{5} - \frac{1}{5}} \right)\\A =  - 1 + 0 + 0 =  - 1\end{array}\)

8 tháng 2 2017

31/29

8 tháng 2 2017

\(=\frac{-\frac{1}{8}-\frac{27}{64}.4}{-2+\frac{9}{16}-\frac{3}{8}}\)

\(=\frac{-\frac{1}{8}-\frac{27}{16.4}.4}{-2+\frac{9-6}{16}}\)

\(=\frac{-\frac{1}{8}-\frac{27}{16}}{-2+\frac{3}{16}}\)

\(=\frac{-\left(\frac{2+27}{16}\right)}{\frac{-32+3}{16}}\)

\(=\frac{-\frac{29}{16}}{\frac{-29}{16}}\)

\(=1\)

29 tháng 10 2020

Ta có: 

\(S=\left(\frac{3}{2}-\frac{2}{2^2}\right)\left(\frac{4}{3}-\frac{2}{3^2}\right)\left(\frac{5}{4}-\frac{2}{4^2}\right)...\left(\frac{101}{100}-\frac{2}{100^2}\right)\)

\(=\frac{4}{2^2}.\frac{10}{3^2}.\frac{18}{4^2}....\frac{100.101-2}{101^2}\)

\(=\frac{1.4}{2^2}.\frac{2.5}{3^2}.\frac{3.6}{4^2}.\frac{4.7}{5^2}...\frac{100.103}{101^2}\)

\(=\frac{1.4}{2^2}.\frac{2.5}{3^2}.\frac{3.6}{4^2}.\frac{4.7}{5^2}...\frac{98.101}{99^2}\frac{99.102}{100^2}\frac{100.103}{101^2}\)

\(=\frac{101.102.103}{1.2.3}\)