Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n+6 chia hết cho 2n-1 => 2(n+6) chia hết cho 2n-1 => 2n+12 chia hết cho 2n-1, 2n-1 chia hết cho 2n-1
=> (2n+12) - (2n-1) chi hết cho 2n-1 => 2n + 12 - 2n + 1 chi hết cho 2n-1
=> 13 chia hết cho 2n-1 => 2n-1 thuộc Ư(13) = {1 ; 13} mà 2n-1 là số lẻ
=> 2n-1 = 1
2n = 1+1
2n = 2
n = 2 : 2
n = 1
Vậy n = 1
Giả sử [(1+2+3+.......+n)-7] chia hết cho 10
=>[(1+2+3+.......+n)-7= \(\frac{n.\left(n+1\right)}{2}\)- 7 \(⋮\)10
=> \(\frac{n.\left(n+1\right)}{2}\)có tận cùng là 7
Nhưng \(\frac{n.\left(n+1\right)}{2}\)chỉ có tận cùng là : 5 ; 2 ; 3 ; 4 ; 0 , không có tận cùng là 7 nên giả thiết trên là sai
Vậy [ ( 1 + 2 + 3 + ... + n ) - 7 ] không chia hết cho 10 với mọi n thuộc N
5n-1 không thể chia hết cho 4 đâu bn ạ nó chỉ có thể chia hết trong 1 vài VD mà thôi
VD n=1 thì 5n-1=4 chia hết cho 4
còn với n=2 thì 5n-1 ko chia hét cho 4
a) có 3n +7 chia hêt cho n
ta thấy 3n chia hết cho n
=> 7 chia hết cho n
=> n
∈Ư(7) ={ 1;-1;7;-7}
vậy ....
b) có 27 - 5n chia hết cho n
ta thấy 5n chia hết cho n
=> 27 chia hết cho n
=> n
Gọi d = UCLN(14n+3; 7n+4)
Ta có: n\(\in\)N; (14n+3; 7n+4) chia hết cho d
[2(7n+4)-14n+3] chia hết cho d
=>14n+8-14n+3 chia hết cho d
=> 5 chia hết cho d
=> d=1;5
Vậy hai số ...................... là hai số nguyên tố cùng nhau
Ta có: n2 + n = n(n + 1)
Do: n là STN => n và n + 1 là 2 STN liên tiếp => n(n + 1) có tận cùng là 0 ; 2 ; 6
Khi n(n + 1) có tận cùng là 0 => n(n + 1) + 6 có tận cùng là 6 không chia hết cho 5 (1)
Khi n(n + 1) có tận cùng là 2 => n(n + 1) + 6 có tận cùng là 8 không chia hết cho 5 (2)
Khi n(n + 1) có tận cùng là 6 => n(n + 1) + 6 có tận cùng là 2 không chia hết cho 5 (3)
Từ (1);(2);(3) ta được: n(n + 1) + 6 không chia hết cho 5 <=> n2 + n + 6 không chia hết cho 5.