K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2018

Ta có: x4 + 6x+ 11x2 + 6x + 1

= x(x3 + 6x2 + 11x + 6) + 1

= x(x3 + 3x2 + 3x2 + 9x + 2x + 6) + 1

= x[x2(x + 3) + 3x(x + 3) + 2(x + 3)] + 1

= x(x + 3)(x2 + 3x + 2) + 1

= (x2 + 3x)(x2 + 3x + 2) + 1

=> (x2 + 3x + 1 - 1)(x2 + 3x + 1 + 1) + 1

= (x2 + 3x + 1)2 - 1 + 1

= (x2 + 3x + 1)2

=> x4 + 6x+ 11x2 + 6x + 1 là số chính phương

4 tháng 2 2019

Giả sử pt có nghiệm thì nghiệm đó k phải là 0. Vì vậy ta có:

\(x^4+6x^3+11x^2+6x+1=x^2\left(x^2+6x+11+\frac{6}{x}+\frac{1}{x^2}\right)\)

\(=x^2\left[\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11\right]\)

\(=x^2\left[\left(x+\frac{1}{x}\right)^2-2+6\left(x+\frac{1}{x}\right)+11\right]\)

\(=x^2\left[\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9\right]\)

\(=x^2\left(x+\frac{1}{x}+3\right)^2=\left(x^2+3x+1\right)^2\) là scp

26 tháng 1 2018

\(x^4+6x^3+11x^2+6x\)

\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

\(x\in Z\Rightarrow x;x+1;x+2;x+3\) là 4 số nguyên liên tiếp

\(\Rightarrow x\left(x+1\right)\left(x+2\right)\left(x+3\right)\) là tích 4 số nguyên liên tiếp

Suy ra \(\hept{\begin{cases}\text{có tích 2 số chẵn liên tiếp }\Rightarrow⋮8\\\text{có một số chia hết 3}\\\left(8;3\right)=1\end{cases}}\)

\(\Rightarrow x\left(x+1\right)\left(x+2\right)\left(x+3\right)⋮24\)

22 tháng 12 2022

Bài 1:

\(\left\{{}\begin{matrix}xy+2=2x+y\left(1\right)\\2xy+y^2+3y=6\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow xy-y+2-2x=0\)

\(\Rightarrow y\left(x-1\right)-2\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(y-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Với \(x=1\). Thay vào (2) ta được:

\(2y+y^2+3y=6\)

\(\Leftrightarrow y^2+5y-6=0\)

\(\Leftrightarrow y^2+y-6y-6=0\)

\(\Leftrightarrow y\left(y+1\right)-6\left(y+1\right)=0\)

\(\Leftrightarrow\left(y+1\right)\left(y-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=6\end{matrix}\right.\)

Với \(y=2\). Thay vào (2) ta được:

\(2x.2+2^2+3.2=6\)

\(\Leftrightarrow4x+4+6=6\)

\(\Leftrightarrow x=-1\)

Vậy hệ phương trình đã cho có nghiệm (x,y) \(\in\left\{\left(1;-1\right),\left(1;6\right),\left(-1;2\right)\right\}\)

22 tháng 12 2022

Bài 2:

\(f\left(x\right)=x^4+6x^3+11x^2+6x\)

\(=x\left(x^3+6x^2+11x+6\right)\)

\(=x\left(x^3+x^2+5x^2+5x+6x+6\right)\)

\(=x\left[x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\right]\)

\(=x\left(x+1\right)\left(x^2+5x+6\right)\)

\(=x\left(x+1\right)\left(x^2+3x+2x+6\right)\)

\(=x\left(x+1\right)\left[x\left(x+3\right)+2\left(x+3\right)\right]\)

\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

b) Ta có: \(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=x\left(x+3\right).\left(x+1\right)\left(x+2\right)+1\)

\(=\left(x^2+3x\right).\left(x^2+3x+2\right)+1\)

\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)

\(=\left(x^2+3x+1\right)^2\)

Vì x là số nguyên nên \(f\left(x\right)+1\) là số chính phương.

15 tháng 7 2018

\(B=x^4-6x^3+11x^2-6x+1\)

\(=\left(x^4-3x^3+x^2\right)-\left(3x^3-9x^2+3x\right)+x^2-3x+1\)

\(=x^2\left(x^2-3x+1\right)-3x\left(x^2-3x+1\right)+\left(x^2-3x+1\right)\)

\(=\left(x^2-3x+1\right)^2\)

12 tháng 11 2021

Bài 1: 

c: \(=\left(x^2+3x+1\right)^2\)

10 tháng 11 2021

1.

\(a,=x^4-3x^3+5x^3-15x^2-x^2+3x-5x+15\\ =\left(x-3\right)\left(x^3+5x^2-x-5\right)\\ =\left(x-3\right)\left(x+5\right)\left(x^2-1\right)\\ =\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)\\ b,=2x^4-2x^3+x^3-x^2-8x^2+8x+5x-5\\ =\left(x-1\right)\left(2x^3+x^2-8x+5\right)\\ =\left(x-1\right)\left(2x^3+5x^2-4x^2-10x+2x+5\right)\\ =\left(x-1\right)\left(2x+5\right)\left(x^2-2x+1\right)\\ =\left(x-1\right)^3\left(2x+5\right)\)

2.

\(a,=n^3\left(n+2\right)-n\left(n+2\right)=n\left(n^2-1\right)\left(n+2\right)\\ =\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Đây là tích 4 số nguyên liên tiếp nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)

Suy ra đpcm

Bổ sung điều kiện câu b: n chẵn và n>4

\(b,=n\left(n^3-4n^2-4n+16\right)=n\left[n^2\left(n-4\right)-4\left(n-4\right)\right]\\ =\left(n-4\right)\left(n-2\right)n\left(n+2\right)\)

Với n chẵn và \(n>4\) thì đây là tích 4 số nguyên chẵn liên tiếp nên chia hết cho \(2\cdot4\cdot6\cdot8=384\)

14 tháng 7 2018

\(B=x^4-6x^3+11x^2-6x+1\)

\(=x^4-x^3+x^2-5x^3+5x^2-5x+x^2-x+1\)

\(=x^2\left(x^2-x+1\right)-5x\left(x^2-x+1\right)+\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^2-5x+1\right)\)

29 tháng 11 2021

Phương trình nào?

29 tháng 11 2021

 \(\left(x^3+6x^2+11x-2\right)^2+13\left(x^3+6x^2+11x-2\right)=-40\)