Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tôi cũng là của FC Real Madrid ở Hà Nam.
Chúng mình kết bạn nhé.hihi.
Ta chứng minh \(2^2+4^2+...+\left(2n\right)^2=\frac{2n\left(n+1\right)\left(2n+1\right)}{3}\) (1)
với mọi n \(\in\)N* , bằng phương pháp quy nạp
Với n = 1, ta có \(2^2=4=\frac{2.1\left(1+1\right)\left(2.1+1\right)}{3}\)
=> (1) đúng khi n = 1
Giả sử đã có (1) đúng khi n = k , k\(\in\)N* , tức là giả sử đã có :
\(2^2+4^2+...+\left(2k\right)^2=\frac{2k\left(k+1\right)\left(2k+1\right)}{3}\)
Ta chứng minh (1) đúng khi n = k + 1 , tức là ta sẽ chứng minh
\(2^2+4^2+...+\left(2k\right)^2+\left(2k+2\right)^2=\frac{2k\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{3}\)
=> Từ giả thiết quy nạp ta có :
\(2^2+4^2+...+\left(2k\right)^2+\left(2k+2\right)^2=\frac{2k\left(k+1\right)\left(2k+1\right)}{3}+\left(2k+2\right)^2\)
\(=\frac{2\left(k+1\right)\left(2k^2+k+6k+6\right)}{3}\)
\(=\frac{2\left(k+1\right)\left[2k\left(k+2\right)+3\left(k+2\right)\right]}{3}\)
\(=\frac{2\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{3}\)
Từ các chứng minh trên , suy ra (1) đúng với mọi n \(\in\)N*
Có: \(\frac{4n^2}{4n^2+1}-\frac{4\left(n-1\right)^2}{4\left(n-1\right)^2+1}=\frac{-1}{4n^2+1}+\frac{1}{\left(2n-2\right)^2+1}\)
\(=\frac{-\left(2n-2\right)^2-1+4n^2+1}{\left(4n^2+1\right)\left[\left(2n-2\right)^2+1\right]}=\frac{4\left(2n-1\right)}{\left(4n^2-4n+1+4n\right)\left(4n^2-4n+1-6n+4\right)}\)
\(=\frac{4\left(2n-1\right)}{\left(4n^2-4n+1\right)^2+4\left(4n^2-4n+1\right)-16n^2+16n}=\frac{4\left(2n-1\right)}{\left(2n-1\right)^4+4}\)
\(\Rightarrow\frac{n^2}{4n^2+1}-\frac{\left(n-1\right)^2}{4\left(n-1\right)^2+1}=\frac{2n-1}{4+\left(2n-1\right)^4}\)
-> đpcm theo phương pháp quy nạp
Trước hết ta chứng minh BĐT
\(\frac{2k-1}{2k}< \frac{\sqrt{3k-2}}{\sqrt{3k+1}}\left(1\right)\)
Thật vậy, (1) \(\Leftrightarrow\left(2k-1\right)\sqrt{3k+1}< 2k\sqrt{3k-2}\)\(\Leftrightarrow\left(4k^2-4k+1\right)\left(3k+1\right)< 4k^2\left(3k-2\right)\)
\(\Leftrightarrow12k^3-8k^2-k+1< 12k^3-8k^2\)\(\Leftrightarrow k-1>0\left(\forall k\ge2\right)\)
Trong (1), lần lượt thay k bằng 1,2,...,n ta được:
\(\frac{1}{2}\le\frac{\sqrt{1}}{\sqrt{4}},\frac{3}{4}\le\frac{\sqrt{4}}{\sqrt{7}},....,\frac{2n-1}{2n}< \frac{\sqrt{3n-2}}{\sqrt{3n+1}}\)
Nhân từng vế các BĐT trên ta có:
\(\frac{1}{2}.\frac{3}{4}....\frac{2n-1}{2n}< \frac{\sqrt{1}}{\sqrt{4}}.\frac{\sqrt{4}}{\sqrt{7}}...\frac{\sqrt{3n-2}}{\sqrt{3n+1}}=\frac{1}{\sqrt{3n+1}}\)