K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2019

\(x^2+5y^2-4xy+2x-10y+14\)

\(=\left(x^2+4y^2-4xy+2x-4y+1\right)+\left(y^2-6y+9\right)+4\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\)

Vì \(\hept{\begin{cases}\left(x-2y+1\right)^2\ge0;\forall x,y\\\left(y-3\right)^2\ge0;\forall x,y\end{cases}}\)

\(\Rightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2+4\ge4>0;\forall x,y\)

Vậy ...

25 tháng 7 2019

Câu hỏi của KiKyo - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!

27 tháng 6 2020

https://olm.vn/hoi-dap/detail/88061957704.html bạn tham khảo câu hỏi này 

27 tháng 6 2020

a) \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+\left(y^2-6y+9\right)+4\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\)

Vì \(\left(x-2y+1\right)^2\ge0\)

      \(\left(y-3\right)^2\ge0\)

 \(\Rightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2+4\ge4>0\)với mọi x,y (ĐPCM)
b) \(5x^2+10y^2-6xy-4x-2y+3\)

\(=\left(4x^2-4x+1\right)+\left(x^2-6xy+9y^2\right)+\left(y^2-2y+1\right)+1\)

\(=\left(2x-1\right)^2+\left(x-3y\right)^2+\left(y-1\right)^2+1\)

Vì \(\left(2x-1\right)^2\ge0\)

      \(\left(x-3y\right)^2\ge0\)

       \(\left(y-1\right)^2\ge0\)

 \(\Rightarrow\left(2x-1\right)^2+\left(x-3y\right)^2+\left(y-1\right)^2+1\ge1>0\)vợi mọi x,y (ĐPCM)

1A = x^2 + 3x + 3
A= x^2 + 2.x.1,5 + 2.25 + 0,75
A = (x+1,5)^2 +0,75
=> Min A = 0,75 khi x= 1,5

2 Đặt A=x2+5y2+2x4xy10y+14

A=(x24xy+4y2)+(2x4y)+1+y26y+9+4

A=(x2y)2+2(x2y)+1+(y3)2+4

A=(x2y+1)2+(y3)2+44>0

A>0(đpcm)

kick nha mình cần điểm hỏi đáp :((

25 tháng 7 2019

Câu hỏi của KiKyo - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!