Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\dfrac{1}{3}-\dfrac{3}{4}-\left(-\dfrac{3}{5}\right)+\dfrac{1}{72}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)
\(=\dfrac{1}{3}-\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{1}{72}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)
\(=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)-\left(\dfrac{3}{4}+\dfrac{2}{9}+\dfrac{1}{36}\right)+\dfrac{1}{72}\)
\(=\left(\dfrac{5}{15}+\dfrac{9}{15}+\dfrac{1}{15}\right)-\left(\dfrac{27}{36}+\dfrac{8}{36}+\dfrac{1}{36}\right)+\dfrac{1}{72}\)
\(=1-1+\dfrac{1}{72}\)
\(=0+\dfrac{1}{72}=\dfrac{1}{72}\)
b) \(B=\dfrac{1}{5}-\dfrac{3}{7}+\dfrac{5}{9}-\dfrac{2}{9}+\dfrac{7}{13}-\dfrac{2}{11}-\dfrac{5}{9}+\dfrac{3}{7}-\dfrac{1}{5}\)
\(=\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+\left(-\dfrac{3}{7}+\dfrac{3}{7}\right)+\left(\dfrac{5}{9}-\dfrac{5}{9}\right)-\left(\dfrac{2}{9}-\dfrac{7}{13}+\dfrac{2}{11}\right)\)
\(=0+0+0-\left(\dfrac{286}{1287}-\dfrac{693}{1287}+\dfrac{234}{1287}\right)\)
\(=-\left(-\dfrac{173}{1287}\right)\)
\(=\dfrac{173}{1287}\)
c) \(C=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-.....-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(=\dfrac{1}{100}-\left(\dfrac{1}{100.99}+\dfrac{1}{99.98}+\dfrac{1}{98.97}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(=\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{-49}{50}\)
Ta có: \(M=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(1+\dfrac{2}{98}\right)+\left(1+\dfrac{3}{97}\right)+\left(1+\dfrac{4}{96}\right)+...+\left(1+\dfrac{98}{2}\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\dfrac{100}{99}+\dfrac{100}{98}+\dfrac{100}{97}+...+\dfrac{100}{1}+\dfrac{100}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
=100
Ta có: \(N=\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
\(=\dfrac{\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{90}{98}\right)+\left(1-\dfrac{91}{99}\right)+\left(1-\dfrac{92}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{99}+\dfrac{8}{100}}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{8}{\dfrac{1}{5}}=40\)
\(\Leftrightarrow\dfrac{M}{N}=\dfrac{100}{40}=\dfrac{5}{2}\)
a,\(\dfrac{1}{3}-\dfrac{3}{5}+\dfrac{5}{7}-\dfrac{7}{9}+\dfrac{9}{11}-\dfrac{11}{13}+\dfrac{13}{15}+\dfrac{11}{13}-\dfrac{9}{11}+\dfrac{7}{9}-\dfrac{5}{7}+\dfrac{3}{5}-\dfrac{1}{3}\)
\(=\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(-\dfrac{3}{5}+\dfrac{3}{5}\right)+.....+\left(-\dfrac{11}{13}+\dfrac{11}{13}\right)+\dfrac{13}{15}\)
\(=0+0+...0+0+\dfrac{13}{15}=\dfrac{13}{15}\)
câu b và c xem lại đề nha
Chúc bạn học tốt!!!
\(\dfrac{15}{12}+\dfrac{5}{13}-\dfrac{3}{12}-\dfrac{18}{13}-\dfrac{1}{3}\)
\(=\left(\dfrac{15}{12}-\dfrac{3}{12}\right)+\left(\dfrac{5}{13}-\dfrac{18}{13}\right)-\dfrac{1}{3}\)
\(=-1+1-\dfrac{1}{3}\)
\(=0-\dfrac{1}{3}\)
\(=\dfrac{-1}{3}\)
------------------------------------------
\(14.\dfrac{3}{2}+\dfrac{6}{5}:\left(-\dfrac{2}{5}\right)\)
\(=14.\dfrac{3}{2}+\dfrac{6}{5}.\dfrac{-5}{2}\)
\(=21+\dfrac{6}{5}.\dfrac{-5}{2}\)
\(=21+\left(-3\right)\)
\(=18\)
------------------------------------------------
\(\sqrt{\dfrac{1}{4}+\dfrac{2}{3}-\left(\dfrac{1}{3}\right)^2}\)
\(=\sqrt{\dfrac{1}{4}+\dfrac{2}{3}-\dfrac{1}{9}}\)
\(=\sqrt{\dfrac{3}{12}+\dfrac{8}{12}-\dfrac{1}{9}}\)
\(=\sqrt{\dfrac{11}{12}-\dfrac{1}{9}}\)
\(=\sqrt{\dfrac{99}{108}-\dfrac{12}{108}}\)
\(=\sqrt{\dfrac{29}{36}}\)
\(=\dfrac{\sqrt{29}}{6}\)
\(\dfrac{15}{12}+\dfrac{5}{13}-\dfrac{3}{12}-\dfrac{18}{13}-\dfrac{1}{3}\)
\(=\dfrac{5}{4}+\dfrac{5}{13}-\dfrac{1}{4}-\dfrac{18}{13}-\dfrac{1}{3}\)
\(=\left(\dfrac{5}{4}-\dfrac{1}{4}\right)+\left(\dfrac{5}{13}-\dfrac{18}{13}\right)-\dfrac{1}{3}\)
\(=1+\left(-1\right)-\dfrac{1}{3}=0-\dfrac{1}{3}=-\dfrac{1}{3}\)
`#3107`
a)
\(\dfrac{11}{12}-\left(\dfrac{2}{5}+\dfrac{3}{4}x\right)=\dfrac{2}{3}?\\ \Rightarrow\dfrac{2}{5}+\dfrac{3}{4}x=\dfrac{11}{12}-\dfrac{2}{3}\\ \Rightarrow\dfrac{2}{5}+\dfrac{3}{4}x=\dfrac{1}{4}\\ \Rightarrow\dfrac{3}{4}x=\dfrac{1}{4}-\dfrac{2}{5}\\ \Rightarrow\dfrac{3}{4}x=-\dfrac{3}{20}\\ \Rightarrow x=-\dfrac{3}{20}\div\dfrac{3}{4}\\ \Rightarrow x=-\dfrac{1}{5}\)
Vậy, \(x=-\dfrac{1}{5}\)
b)
\(\dfrac{-2}{5}+\dfrac{5}{3}\cdot\left(\dfrac{3}{2}-\dfrac{4}{15}x\right)=\dfrac{-7}{6}\\ \Rightarrow\dfrac{5}{3}\cdot\left(\dfrac{3}{2}-\dfrac{4}{15}x\right)=\dfrac{-7}{6}-\dfrac{-2}{5}\\ \Rightarrow\dfrac{5}{3}\cdot\left(\dfrac{3}{2}-\dfrac{4}{15}x\right)=-\dfrac{23}{30}\\ \Rightarrow\dfrac{3}{2}-\dfrac{4}{15}x=-\dfrac{23}{30}\div\dfrac{5}{3}\\ \Rightarrow\dfrac{3}{2}-\dfrac{4}{15}x=-\dfrac{23}{50}\\ \Rightarrow\dfrac{4}{15}x=\dfrac{3}{2}-\left(-\dfrac{23}{50}\right)\\ \Rightarrow\dfrac{4}{15}x=\dfrac{49}{25}\\ \Rightarrow x=\dfrac{147}{20}\)
Vậy, \(x=\dfrac{147}{20}\)
c)
\(\dfrac{1}{2}+\dfrac{3}{4}x=\dfrac{1}{4}\\ \Rightarrow\dfrac{3}{4}x=\dfrac{1}{4}-\dfrac{1}{2}\\ \Rightarrow\dfrac{3}{4}x=-\dfrac{1}{4}\\ \Rightarrow x=-\dfrac{1}{4}\div\dfrac{3}{4}\\ \Rightarrow x=-\dfrac{1}{3}\)
Vậy, \(x=-\dfrac{1}{3}.\)
\(#Emyeu1aithatroi...\)
(2/5 + 3/4 . x)= 11/12 -2/3
(2/5 +3/4 . x)= 1/4
3/4 . x = 1/4 - 2/5
3/4 . x = -3/20
x = -3/20 : 3/4
x = -1/5
Vậy .....
bài1
a) \(\dfrac{7}{6}-\dfrac{13}{12}+\dfrac{3}{4}\)
=\(\dfrac{14}{12}-\dfrac{13}{12}+\dfrac{9}{12}\)
=\(\dfrac{1}{12}+\dfrac{9}{12}\)
=\(\dfrac{10}{12}=\dfrac{5}{6}\)
bài 1
b)\(1\dfrac{1}{2}.(\dfrac{-4}{5})\) + \(\dfrac{3}{10}\)
= \(\dfrac{3}{2}.\left(-\dfrac{4}{5}\right)+\dfrac{3}{10}\)
= \(-\dfrac{6}{5}+\dfrac{3}{10}\)
=\(-\dfrac{12}{10}+\dfrac{3}{10}\)
=\(-\dfrac{9}{10}\)
a: Ta có: \(\dfrac{8}{9}-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{72}\right)\)
\(=\dfrac{8}{9}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}-...+\dfrac{1}{8}-\dfrac{1}{9}\right)\)
=0
a) \(\dfrac{-12}{15}+\dfrac{-4}{26}=\dfrac{-4}{5}+\dfrac{-2}{13}=\dfrac{-52-10}{65}=\dfrac{-62}{65}\)
b) \(5\dfrac{1}{3}-2\dfrac{4}{5}=\dfrac{16}{3}-\dfrac{14}{5}=\dfrac{80}{15}-\dfrac{42}{15}=\dfrac{38}{15}\)
c) \(\dfrac{4}{5}-\left(-\dfrac{2}{7}\right)+\dfrac{-5}{10}=\dfrac{4}{5}+\dfrac{2}{7}-\dfrac{1}{2}=\dfrac{56}{70}+\dfrac{20}{70}-\dfrac{35}{70}=\dfrac{41}{70}\)
d) \(-1\dfrac{2}{7}+\dfrac{3}{14}-\dfrac{5}{21}=\dfrac{-9}{7}+\dfrac{3}{14}-\dfrac{5}{21}=\dfrac{-54}{42}+\dfrac{9}{42}-\dfrac{10}{42}=\dfrac{-55}{42}\)
e) \(12-\dfrac{11}{121}+\left(\dfrac{-8}{9}\right)-\left(-\dfrac{3}{7}\right)\)
\(=12-\dfrac{11}{121}-\dfrac{8}{9}+\dfrac{3}{7}\)
\(=\dfrac{91476}{7623}-\dfrac{693}{7623}-\dfrac{6776}{7623}+\dfrac{3267}{7623}\)
\(=\dfrac{7934}{693}\)
T làm biếng lắm; làm C thôi
\(A=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\\ \Rightarrow A< \dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{100}{101}\\ \Rightarrow A^2< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{100}{101}\right)\\ =\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}...\dfrac{99}{100}.\dfrac{100}{101}\\ =\dfrac{1}{101}< \dfrac{1}{100}\\ \Rightarrow A< \dfrac{1}{10}\)
Làm tương tự ta được A > 1/15
câu a
\(A=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{30}>\dfrac{20}{30}=\dfrac{2}{3}>\dfrac{1}{3}\)
\(A=\left(\dfrac{1}{11}+..+\dfrac{1}{15}\right)+\left(\dfrac{1}{16}+...+\dfrac{1}{30}\right)< 5.\dfrac{1}{10}+25.\dfrac{1}{15}=\dfrac{1}{2}+\dfrac{5}{3}=\dfrac{8}{6}=\dfrac{4}{3}< \dfrac{5}{2}\)