Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2-3x+10>0
Có x2-3x+10=x2-2x\(\frac{3}{2}\)+\(\frac{9}{4}\)+\(\frac{31}{4}\)=(x-\(\frac{3}{2}\))2+\(\frac{31}{4}\)>0 với mọi x
=> x2-3x+10>0
b) 3x2+5x+20>0
3x2+5x+20=3(x2+\(\frac{5}{3}\)x+\(\frac{20}{3}\))=3(x2+2.x.\(\frac{5}{6}\)+\(\frac{25}{36}\)+\(\frac{215}{36}\))=3(x+\(\frac{5}{6}\))2+\(\frac{215}{12}\)>0 với mọi x
=>3x2+5x+20 >0
c) -2x2-5x-15<0
-2x2-5x-15=-2(x2+\(\frac{5}{2}\)x+\(\frac{15}{2}\))=-2(x2+2.x.\(\frac{5}{4}\)+\(\frac{25}{20}\)+\(\frac{25}{4}\))=-2(x+\(\frac{5}{4}\))-\(\frac{25}{2}\)<0 với mọi x
-2x2-5x-15<0
a) Ta có: \(x^2-3x+10=x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{31}{4}=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}>0\)
Vậy x2 - 3x + 10 > 0 (đpcm)
b) Tương tự
11 phút trước (15:52)
Cho a,b >0 và a+b=1. chứng minh rằng: (a+1a )2+(b+1b 2)≥12,5
Mình cần gấp, ai làm nhanh và đúng nhất được 3 ks!
Câu hỏi tương tự Đọc thêm Báo cáo
Toán lớp 9 Bất đẳng thức
VKOOK_BTS
Trả lời
0
Đánh dấu
8 phút trước (15:31)
\(x^{8n}+x^{4n}+1=\left(x^{4n}\right)^2+2x^{4n}+1-\left(x^{2n}\right)^2\)
=\(\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2=\left(x^{4n}-x^{2n}+1\right)\left(x^{4n}+x^{2n}+1\right)\)
phân tích như vậy tương tự với \(x^{4n}+x^{2n}+1=\left(x^{2n}+x^n+1\right)\left(x^{2n}-x^n+1\right)\)
Cái đó chia hết cho x2n+xn+1 => x8n+x4n+1 chia hết cho .................
ko hiểu j hết trơn í
ta có: Chứng Mình Rằng
=> Chứng có: C
=> Minh có: M
=> Rằng có: R
=> Chứng minh rằng là viết tắt của CMR (đpcm)