Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(n^2+3n+11\)
\(=n^2+3n+18-7\)
\(=\left(n+2\right)\left(n+9\right)-7\)
Giả sử: \(n^2+3n+11\) ⋮ 49 \(\Rightarrow n^2+3n+11\) ⋮ 7
Mà: \(\left(n+9\right)-\left(n+2\right)\) ⋮ 7
Đồng thời ta có: \(\left(n+9\right)\left(n+2\right)\) ⋮ 49 ngược lại 7 \(⋮̸\)49
Nên điểu giả sử là sai \(\Rightarrow n^2+3n+11⋮̸49\left(dpcm\right)\)
`(n^2+3n+1)^2-1`
`=(n^2+3n+1)-1^2`
`=(n^2+3n+1+1)(n^2+3n+1-1)`
`=(n^2+3n+2)(n^2+3n)`
`=(n+1)(n+2)n(n+3)`
`=n(n+1)(n+2)(n+3)` là tích của 4 số tự nhiên liên tiếp.
`=> n(n+1)(n+2)(n+3) vdots 24`
Ta có: \(n^5-n=n\left(n^4-1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
= \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
+) vì n ( n - 1) chia hết cho 2 và (n - 1) n ( n+1 ) chia hết cho 3
=> n ( n - 1 ) ( n + 1 ) chia hết cho 6
nên \(n^5-n=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮6\)
+) Vì \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\) và \(5n\left(n-1\right)\left(n+1\right)⋮5\)
=> \(n^5-n=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮5\)
Mà ( 5; 6 ) = 1 và 5.6 = 30
=> \(n^5-n⋮30\) với mọi số tự nhiên n
=> \(\left(2^{3n+1}+2^n\right)\left(n^5-n\right)⋮30\) với mọi số tự nhiên n
a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn
b: Đặt \(A=n^3+3n^2-n-3\)
\(=\left(n^3+3n^2\right)-\left(n+3\right)\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
n lẻ nên n=2k+1
=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)
=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)
c:
d: Đặt \(B=n^4-4n^3-4n^2+16n\)
\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)
\(=n^3\left(n-4\right)-4n\left(n-4\right)\)
\(=\left(n-4\right)\left(n^3-4n\right)\)
\(=n\left(n-4\right)\left(n^2-4\right)\)
\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)
n chẵn và n>=4 nên n=2k
B=n(n-4)(n-2)(n+2)
\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)
\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)
Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp
nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)
=>B chia hết cho \(16\cdot24=384\)
a) Ta có: ( 3 n - 1 ) 2 - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).
Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên ( 3 n - 1 ) 2 - 4 chia hết cho 3 với mọi số tự nhiên n;
b) Ta có: 100 - ( 7 n + 3 ) 2 =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.
a) (n+3)\(^2\)- (n+1)\(^2\) = (n+3-n-1).(n+3+n+1) = 2(2n+4) = 4(n+2)
Sẽ ko chia hết cho 8 nếu n là số lẻ!
b) (n+6)\(^2\)- (n-6)\(^2\) = (n+6-n+6).(n+6+n-6) = 12.2n = 24n chia hết cho 6 với mọi n
Xin 1 like nha bạn. Thx bạn, chúc bạn học tốt
Ta có:
(n2+3n+1)2-1
= (n2+3n+1-1)(n2+3n+1+1)
= (n2+3n)(n2+3n+2)
=(n2+3n)(n2+n+2n+2)
=(n2+3n)(n(n+1)+2(n+1))
=n(n+1)(n+2)(n+3)
với mọi n thuộc N thì n(n+1)(n+2)(n+3) là tích của 4 số tự nhiên liên tiếp
=> tồn tại 2 số chia hết cho 2 và chia hết cho 4 => chia hết cho 8
tồn tại một số chia hết cho 3
mà BCNN(8;3)=24 => n(n+1)(n+2)(n+3) chia hết cho 24
nên (n2+3n+1)2-1 chia hết cho 24 với mọi n thuộc N
Chúc bạn học tốt.