Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
Ta có: \(3^{n+2}+3^n=3^n\left(3^2+1\right)=10.3^n⋮10\)
\(2^{n+2}+2^n=2^n\left(4+1\right)=5.2^n=10.2^{n-1}⋮10\)
=> \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)⋮10\) ∀n∈N
Vậy ...
3n+2 -2n+2 +3n -2n
=3n .32 -2n .22 +3n -22
=3n(9+)-2n(4-1)
Vì 3n .10 ⋮10
=> 3n .10- 2n .3⋮10
=>3n +2 -2n+2 +3n -2n ⋮10
sai
trước 2^n là dấu trừ => trong ngoặc đổi dấu thành 2^n(4+1)
=>2^n-1.10 chia hết cho 10
=>(3^n+2)+(3^n)-(2^n+2)-(2^n)=3^n((3^2)+1)-2^n((2^2)+1)=(3^n)*10-(2^n)*5=(3^n)*10-(2^n-1)*5*2=(3^n)*10-(2^n-1)*10=10*((3^n)-(2^n-1) chia hết cho 10
=>(3^n+2)-(2^n+2)+(3^n)-(2^n)chia hết cho 10
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)+\left(-2^{n+2}-2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Vậy 3n+2 - 2n+2 + 3n - 2n chia hết cho 10
Ta có 3n+2-2n+2+3n-2n
=3n.9-2n.5+3n-2n
= 3n.(9+1)-2n.(4+1)
=3n.10-2n.5=3n.10-2n-1.10
Do 3n.10 chia hết cho 10 với mọi số nguyên dương n
2n-1.10 chia hết cho 10 với mọi số nguyên dương n
Nên 3n+2-2n+2+3n-2n chia hết cho 10 với mọi số nguyên dương n
bạn vào câu hỏi tương tự nha
Chắc chắn rồi ko cần chững minh