K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2016

9 bạn trai

duyệt đi

10 tháng 2 2016

Có 7 bạn nói câu “Đa số chúng ta là con trai” và 6 bạn nói “Đa số chúng ta là con gái”. Do đó sẽ có ít nhất 6 cặp khác giới kề nhau, nhưng cũng có ít nhất 6 cặp cùng giới kề nhau.

Hai người kề nhau nói các mệnh đề khác nhau, trừ bạn đầu tiên và bạn cuối cùng. Ta thấy trừ các vị trí 13, 1, 2, ở các vị trí khác, không thể có 3 người cùng giới kề nhau, vì ví dụ nếu có Nam 1, Nam 2, Nam 3 kề nhau thì Nam 1 và Nam 2 nói ngược nhau, mặc dù về nguyên tắc họ phải nó thật.

Vì phải có ít nhất 6 cặp cùng giới kề nhau nên từ đây suy ra cách sắp duy nhất thỏa mãn yêu cầu là Nam, Nam, Nữ, Nữ, Nam, Nam, Nữ, Nữ, Nam, Nam, Nữ, Nữ, Nam.

Vậy có 7 bạn trai ngồi quanh bàn.

duyệt đi

4 tháng 2 2016

AI DI NGANG QUA NHO BAM MINH NHA THI CA NAM SE GAP DUOC NHIEU MAY MAN

12 tháng 4 2016

Số nam nhiều hơn số nữ 1 người.

Nếu bớt đi 1 nữ thì số nam gấp 2 lần số nữ.

Khi nữ bớt đi 1 người thì số nam nhiều hơn: 

1+1=2 ( người )

Số bạn nam là :

2 x 2 = 4 ( nam )

Số bạn nữ là:

4 - 1 = 3 ( nữ )

12 tháng 4 2016

Số nam nhiều hơn số nữ là 1 người.

Nếu bớt đi 1 nữ thì số nam gấp 2 lần số nữ.

Khi nữ bớt đi 1 người thì số nam nhiều hơn:  1+1=2 (người)

Số bạn nam là:   2 x 2 = 4 (nam)

Số bạn nữ là: 4 – 1 = 3 (nữ)

28 tháng 2 2016

thi   sao

28 tháng 3 2023

0 kẻ nói dối

 

27 tháng 12 2015

tích mk nha mk giải rùi nhưng ko hiện

Trồng vườn và chăm nom muôn loài là sở thích của công chúa Vòng Tròn. Vừa xây xong khu vườn, công chúa lại đem đố hoàng tử Số Pi và Euclide những câu đố về muôn loài. Hôm nay là đố về vấn đề chia thức ăn.Bạn Thỏ và bạn Cáo chia nhau một chiếc bánh, ai cũng muốn mình không bị thiệt, ít nhất phải được nửa cái. Tất nhiên, mỗi bạn nhìn cái bánh theo mắt của mình nên có khi bạn này...
Đọc tiếp

Trồng vườn và chăm nom muôn loài là sở thích của công chúa Vòng Tròn. Vừa xây xong khu vườn, công chúa lại đem đố hoàng tử Số Pi và Euclide những câu đố về muôn loài. Hôm nay là đố về vấn đề chia thức ăn.

Bạn Thỏ và bạn Cáo chia nhau một chiếc bánh, ai cũng muốn mình không bị thiệt, ít nhất phải được nửa cái. Tất nhiên, mỗi bạn nhìn cái bánh theo mắt của mình nên có khi bạn này thấy miếng này to mà bạn kia lại thấy miếng kia to.

Bạn Gấu thấy thế, bèn chia đôi cái bánh, theo bạn là rất cân bằng rồi thế mà cả hai bạn kia đều bảo bên trái to hơn và tranh nhau.

Bực mình, bạn Gấu bảo: “Thế cho các cậu tự đi mà chia với nhau”.

Lần này, Thỏ cố chia hai phần thật bằng nhau. Thỏ lấy phần nào cũng được nên vui vẻ đưa cho Cáo chọn. Cáo nhìn mãi cảm giác phần bên phải to hơn nên chọn phần bên phải.

Thế là, cả hai bạn đều vui vẻ, vì theo Thỏ thì phần bên trái là 1/2 bánh nên Thỏ hài lòng, còn theo Cáo thì phần bên phải lớn hơn 1/2 bánh, nên Cáo cũng hài lòng. Hai bạn dung dăng dung dẻ vừa đi vừa chén bánh.

Hôm sau, Gấu mang đến một cái bánh to và bảo: “Ba chúng ta chia nhau. Hôm qua, hai cậu đều vui vẻ. Hôm nay, chúng ta chia thế nào để cả ba cùng vui là được".

Vui ở đây nghĩa là mỗi con đều cảm thấy theo chủ quan của mình, là mình được ít nhất 1/3 cái bánh. Thỏ xông ra định chia, nhưng mà làm thế nào cũng có người không hài lòng. Ba con vò đầu bứt tai suýt oánh nhau.

Bạn có thể nói một phương pháp chia nào (có thể chia nhiều lần, ai cũng có thể được cắt bánh, chia đi chia lại) miễn làm sao cuối cùng ai cũng vui không?

Nếu có 10 con thú Thỏ, Cáo, Gấu, Hổ, Sư tử, Khỉ, Sóc, Hươu, Nai, Xạ hươu cùng chia nhau một cái bánh to, thì có thể chia để con nào cũng vui không (nghĩa là con nào cũng cảm thấy mình được ít nhất 1/10 cái bánh).

1
21 tháng 8 2017

(14,78-a)/(2,87+a)=4/1

14,78+2,87=17,65

Tổng số phần bằng nhau là 4+1=5

Mỗi phần có giá trị bằng 17,65/5=3,53

=>2,87+a=3,53

=>a=0,66.

22 tháng 2 2016

Đáp án bài toán trong đề thi Olympic lớp 9 của Nga

Vì cả 15 người ở vị trí lẻ đã nói “Đúng” nên tất cả những người ở vị trí chẵn đều nói “Không”. Tức là đáp số bằng 0.​

  • Bài toán trong đề thi Olympic lớp 9 của Nga

Đề bài:

30 người ngồi quanh một bàn tròn 30 chiếc ghế đánh số 1, 2,..., 30 theo thứ tự. Một số trong họ là Hiệp sĩ, một số là Kẻ lừa dối.

Những bài toán về Hiệp sĩ và Kẻ lừa dối luôn hấp dẫn và cho dù đã giải không ít những bài toán như vậy, chúng ta vẫn có thể rất bất ngờ với những cách phát biểu tươi mới. Xin giới thiệu với bạn đọc một đề thi Olympic Toán lớp 9 của Nga.

30 người ngồi quanh một bàn tròn 30 chiếc ghế đánh số 1, 2,..., 30 theo thứ tự. Một số trong họ là Hiệp sĩ, một số là Kẻ lừa dối. Hiệp sĩ luôn nói thật còn kẻ lừa dối luôn nói dối. Mỗi một người có đúng một người bạn trong số những người khác. Hơn nữa, bạn của Hiệp sĩ là Kẻ lừa dối và bạn của Kẻ lừa dối là Hiệp sĩ. Mỗi người đều được hỏi "Có phải bạn của anh đang ngồi cạnh anh không?". 15 người ngồi ở vị trí lẻ trả lời "Đúng".

Tìm số người ngồi ở vị trí chẵn cũng trả lời "Đúng".

Giải:

Từ đề bài ta suy ra trong 30 người có đúng 15 cặp Hiệp sĩ – Kẻ lừa dối là bạn của nhau. Ta có thể dễ dàng đoán được đáp số của bài toán bằng cách “giả định” 15 người ở vị trí lẻ đều là Hiệp sĩ. Khi đó, dĩ nhiên bạn của họ đều ngồi cạnh họ ở các vị trí chẵn và đều là Kẻ lừa dối, do đó không có ai nói “Đúng”. Đáp số là 0.

Tuy nhiên, đó chỉ là dự đoán đáp số chứ không phải lời giải. Với cách hỏi ở đề bài, ta biết đáp số là 0. Nhưng để khẳng định điều này, ta phải chứng minh chứ không chỉ là đưa ra một ví dụ như vậy.

Nếu chúng ta sa đà vào việc xét vị trí ngồi của 30 người (ai là hiệp sĩ, ai là kẻ nối dối) thì sẽ rất rối vì có nhiều trường hợp xảy ra. Bí quyết của lời giải là ở nhận xét quan trọng sau: Trong 2 người là bạn của nhau, chỉ có đúng 1 người nói “Đúng” cho câu hỏi "Có phải bạn của anh đang ngồi cạnh anh không?".

Thật vậy, nếu có hai người, 1 hiệp sĩ, 1 kẻ lừa dối là bạn của nhau. Xét 2 trường hợp: 

1) Nếu họ ngồi cạnh nhau thì Hiệp sĩ sẽ nói đúng, còn Kẻ lừa dối nói “Không”. 

2) Nếu họ không ngồi cạnh nhau thì Hiệp sĩ nói “Không”, còn Kẻ lừa dối nói “Đúng”. 

Như vậy, vì ta có 15 cặp bạn nên ta có đúng 15 câu trả lời “Đúng”. Vì cả 15 người ở vị trí lẻ đã nói “Đúng” nên tất cả những người ở vị trí chẵn đều nói “Không”. Tức là đáp số bằng 0.

Chú ý rằng ta không biết được trong 15 người ở vị trí lẻ có bao nhiêu người là Hiệp sĩ, có bao nhiêu người là Kẻ lừa dối và họ xếp ở những vị trí nào.

22 tháng 2 2016

Đáp án là 0 nha bạn

6 tháng 5 2022

Vì cả 15 người ở vị trí lẻ đã nói “Đúng” nên tất cả những người ở vị trí chẵn đều nói “Không”. Tức là đáp số bằng 0.​

  • Bài toán trong đề thi Olympic lớp 9 của Nga

Đề bài:

30 người ngồi quanh một bàn tròn 30 chiếc ghế đánh số 1, 2,..., 30 theo thứ tự. Một số trong họ là Hiệp sĩ, một số là Kẻ lừa dối.

Những bài toán về Hiệp sĩ và Kẻ lừa dối luôn hấp dẫn và cho dù đã giải không ít những bài toán như vậy, chúng ta vẫn có thể rất bất ngờ với những cách phát biểu tươi mới. Xin giới thiệu với bạn đọc một đề thi Olympic Toán lớp 9 của Nga.

30 người ngồi quanh một bàn tròn 30 chiếc ghế đánh số 1, 2,..., 30 theo thứ tự. Một số trong họ là Hiệp sĩ, một số là Kẻ lừa dối. Hiệp sĩ luôn nói thật còn kẻ lừa dối luôn nói dối. Mỗi một người có đúng một người bạn trong số những người khác. Hơn nữa, bạn của Hiệp sĩ là Kẻ lừa dối và bạn của Kẻ lừa dối là Hiệp sĩ. Mỗi người đều được hỏi "Có phải bạn của anh đang ngồi cạnh anh không?". 15 người ngồi ở vị trí lẻ trả lời "Đúng".

Tìm số người ngồi ở vị trí chẵn cũng trả lời "Đúng".

Giải:

Từ đề bài ta suy ra trong 30 người có đúng 15 cặp Hiệp sĩ – Kẻ lừa dối là bạn của nhau. Ta có thể dễ dàng đoán được đáp số của bài toán bằng cách “giả định” 15 người ở vị trí lẻ đều là Hiệp sĩ. Khi đó, dĩ nhiên bạn của họ đều ngồi cạnh họ ở các vị trí chẵn và đều là Kẻ lừa dối, do đó không có ai nói “Đúng”. Đáp số là 0.

Tuy nhiên, đó chỉ là dự đoán đáp số chứ không phải lời giải. Với cách hỏi ở đề bài, ta biết đáp số là 0. Nhưng để khẳng định điều này, ta phải chứng minh chứ không chỉ là đưa ra một ví dụ như vậy.

Nếu chúng ta sa đà vào việc xét vị trí ngồi của 30 người (ai là hiệp sĩ, ai là kẻ nối dối) thì sẽ rất rối vì có nhiều trường hợp xảy ra. Bí quyết của lời giải là ở nhận xét quan trọng sau: Trong 2 người là bạn của nhau, chỉ có đúng 1 người nói “Đúng” cho câu hỏi "Có phải bạn của anh đang ngồi cạnh anh không?".

Thật vậy, nếu có hai người, 1 hiệp sĩ, 1 kẻ lừa dối là bạn của nhau. Xét 2 trường hợp: 

1) Nếu họ ngồi cạnh nhau thì Hiệp sĩ sẽ nói đúng, còn Kẻ lừa dối nói “Không”. 

2) Nếu họ không ngồi cạnh nhau thì Hiệp sĩ nói “Không”, còn Kẻ lừa dối nói “Đúng”. 

Như vậy, vì ta có 15 cặp bạn nên ta có đúng 15 câu trả lời “Đúng”. Vì cả 15 người ở vị trí lẻ đã nói “Đúng” nên tất cả những người ở vị trí chẵn đều nói “Không”. Tức là đáp số bằng 0.

Chú ý rằng ta không biết được trong 15 người ở vị trí lẻ có bao nhiêu người là Hiệp sĩ, có bao nhiêu người là Kẻ lừa dối và họ xếp ở những vị trí nào.