Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(R=\dfrac{R1.R2}{R1+R2}=\dfrac{10.15}{10+15}=6\left(\Omega\right)\)
b. \(U=U1=U2=12\left(V\right)\)(R1//R2)
\(\left[{}\begin{matrix}I=U:R=12:6=2\left(A\right)\\I1=U1:R1=12:10=1,2\left(A\right)\\I2=U2:R2=12:15=0,8\left(A\right)\end{matrix}\right.\)
a,có \(R1//R2//R3\)
\(=>\dfrac{1}{Rtd}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}=\dfrac{1}{10}+\dfrac{1}{20}+\dfrac{1}{20}\)
\(=>Rtd=5\left(om\right)\)
\(b,=>Im=\dfrac{U}{Rtd}=\dfrac{12}{5}=2,4A\)
\(=>U=U123=U1=U2=U3=12V\)
\(=>\left\{{}\begin{matrix}I1=\dfrac{U1}{R1}=\dfrac{12}{10}=1,2A\\I2=\dfrac{U2}{R2}=\dfrac{12}{20}=0,6A\\I3=\dfrac{U3}{R3}=\dfrac{12}{20}=0,6A\end{matrix}\right.\)
Cường độ dòng điện chạy qua mạch chính là:
Vì R 1 , R 2 , R 3 mắc song song với nhau nên U 1 = U 2 = U 3 = U
Cường độ dòng điện chạy qua từng mạch rẽ là:
a)\(R_1//R_2\)\(\Rightarrow R_{tđ}=\dfrac{R_1\cdot R_2}{R_1+R_2}=\dfrac{5\cdot10}{5+10}=\dfrac{10}{3}\Omega\)
b)\(U_1=U_2=U=12V\)
\(I_1=\dfrac{U_1}{R_1}=\dfrac{12}{5}=2,4A\)
\(I_2=\dfrac{U_2}{R_2}=\dfrac{12}{10}=1,2A\)
\(I=I_1+I_2=2,4+1,2=3,6A\)
c)Công sản ra của đoạn mạch:
\(A=UIt=12\cdot3,6\cdot10\cdot60=25920J=25,92kJ\)
Khi R1 mắc nối tiếp với R2 thì: ↔ R1 + R2 = 40Ω (1)
Khi R1 mắc song song với R2 thì:
Thay (1) vào (2) ta được R1.R2 = 300
Ta có: R2 = 40 – R1 → R1.(40 – R1) = 300 ↔ - R12 + 40R1 – 300 = 0 (*)
Giải (*) ta được: R1 = 30Ω; R2 = 10Ω hoặc R1 = 10Ω; R2 = 30Ω.
R 1 + R 2 = U / I = 40 ( R 1 . R 2 ) / ( R 1 + R 2 ) = U / I ’ = 7 , 5
Giải hệ pt theo R 1 ; R 2 ta được R 1 = 30 ; R 2 = 10
Hoặc R 1 = 10 ; R 2 = 30
a. Điên trở tương đương của đoạn mạch này là :
\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{60.12}{60+12}=10\Omega\)
b. CĐDĐ qua mạch chính là :
\(I=\dfrac{U}{R}=\dfrac{2,4}{10}=0,24A\)
Vì \(R_1\)//\(R_2\) nên :
\(U=U_1=U_2=2,4V\)
CĐDĐ qua các đoạn mạch rẽ là :
\(I_1=\dfrac{U_1}{R_1}=\dfrac{2,4}{60}=0,04A\)
\(\Rightarrow I_2=0,24-0,04=0,2A\)
c. Vì điện trở \(R_3\) nt ( \(R_1\)//\(R_2\)) nên điện trở tương đương toàn mạch là :
\(R_{123}=R_{12}+R_3=10+16=26\Omega\)
\(\Rightarrow\) CĐDĐ qua mạch chính là :
\(I=\dfrac{U}{R_{123}}=\dfrac{2,4}{26}\approx0,1A\)
Vậy : a. Điện trở tương đương của đoạn mạch \(R_1\)//\(R_2\) là \(10\Omega\)
b. I = 0,24A ; \(I_1=0,04A\) ; \(I_2=0,2A\)
c. \(I_{123}\) = 0,1A
Khi mắc nối tiếp:
\(R_{tđ}=R_1+R_2=\dfrac{U}{I}=\dfrac{24}{0,6}=40\left(\Omega\right)\left(1\right)\)
Khi mắc song song:
\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{12}{1,6}=\dfrac{15}{2}\Rightarrow R_1.R_2=\dfrac{15}{2}.40=300\left(\Omega\right)\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\left\{{}\begin{matrix}R_1+R_2=40\left(\Omega\right)\\R_1.R_2=300\left(\Omega\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}R_1=\dfrac{300}{R_2}\\\dfrac{300}{R_2}+R_2=40\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}R_1=\dfrac{300}{R_2}\\\dfrac{300+R_2^2}{R_2}=40\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}R_1=\dfrac{300}{R_2}\\\left(R_2-30\right)\left(R_2-10\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}R_1=10\left(\Omega\right)\\R_2=30\left(\Omega\right)\end{matrix}\right.\\\left\{{}\begin{matrix}R_1=30\left(\Omega\right)\\R_2=10\left(\Omega\right)\end{matrix}\right.\end{matrix}\right.\)
Ta có: \(R_{tđ}=\dfrac{R_1R_2}{R_1+R_2}=\dfrac{R_1^2}{2R_1}=\dfrac{R_1}{2}\) (do R1=R2)
Mà \(R_{tđ}=\dfrac{U}{I}=\dfrac{12}{0,8}=15\Omega\)
\(\Rightarrow15=\dfrac{R_1}{2}\Leftrightarrow R_1=15.2=30\Omega\)