Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi các kích thước hìh chữ nhật là x, y, z thỳ x, y, z > 0 vs x + y + z = k (ko đổi). Áp dụng bất đẳng thức Cô-si cho ba số dương ta có:
\(\sqrt[3]{xyz}\le\frac{x+y+z}{3}=\frac{k}{3}\)
Do đó: \(\text{V}=xyz\le\left(\frac{k}{3}\right)^3\)(ko đổi).
Vậy: V đạt giá trị lớn nhất khj và chỉ khi BĐT này trở thành đẳng thức hay là x = y = z, tức là khi hình chữ nhật trở thành hình lập phương.
b) Gọi 3 kích thước của hình hộp là x, y, z (ĐK)
Áp dụng bất đẳng thức Cô - si cho 3 số dương ta có :
\(x+y+z\ge3\sqrt[3]{xyz}\)
Từ đây ta có :
x + y + z nhỏ nhất là = \(3\sqrt[3]{xyz}\)
Bất đẳng thức Cô - si xảy ra dấu "=" khi : x = y = z.
Mọi người ko cần giúp mk nữa đâu vì mk làm được rùi nha !
Bất đẳng thức cần chứng minh tương đương: \(\frac{1}{a^4\left(b+1\right)\left(c+1\right)}+\frac{1}{b^4\left(c+1\right)\left(a+1\right)}+\frac{1}{c^4\left(a+1\right)\left(b+1\right)}\ge\frac{3}{4}\)
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=1\end{cases}}\)và ta đưa BĐT cần chứng minh về dạng \(\frac{x^3}{\left(y+1\right)\left(z+1\right)}+\frac{y^3}{\left(z+1\right)\left(x+1\right)}+\frac{z^3}{\left(x+1\right)\left(y+1\right)}\ge\frac{3}{4}\)
Áp dụng BĐT AM - GM, ta được:\(\frac{x^3}{\left(y+1\right)\left(z+1\right)}+\frac{y+1}{8}+\frac{z+1}{8}\ge\frac{3}{4}x\)
Tương tự: \(\frac{y^3}{\left(z+1\right)\left(x+1\right)}+\frac{z+1}{8}+\frac{x+1}{8}\ge\frac{3}{4}y\); \(\frac{z^3}{\left(x+1\right)\left(y+1\right)}+\frac{x+1}{8}+\frac{y+1}{8}\ge\frac{3}{4}z\)
Cộng theo vế của 3 BĐT trên, ta được: \(\frac{x^3}{\left(y+1\right)\left(z+1\right)}+\frac{y^3}{\left(z+1\right)\left(x+1\right)}+\frac{z^3}{\left(x+1\right)\left(y+1\right)}+\)\(\frac{x+y+z+3}{4}\ge\frac{3}{4}\left(x+y+z\right)\)
\(\Rightarrow\frac{x^3}{\left(y+1\right)\left(z+1\right)}+\frac{y^3}{\left(z+1\right)\left(x+1\right)}+\frac{z^3}{\left(x+1\right)\left(y+1\right)}\)\(\ge\frac{1}{2}\left(x+y+z\right)-\frac{3}{4}\ge\frac{1}{2}.3\sqrt[3]{xyz}-\frac{3}{4}=\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = z = 1 hay a = b = c = 1
Ta có \(3a+1\ge\left(\dfrac{\sqrt{10}-1}{3}a+1\right)^2\Leftrightarrow a\left(3-a\right)\ge0\) (luôn đúng)
Do đó \(\sqrt{3a+1}\ge\dfrac{\sqrt{10}-1}{3}a+1\).
Tương tự, \(\sqrt{3b+1}\ge\dfrac{\sqrt{10}-1}{3}b+1;\sqrt{3c+1}\ge\dfrac{\sqrt{10}-1}{3}c+1\).
Do đó \(\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\ge\sqrt{10}+2\).
Dấu "=" xảy ra khi chẳng hạn a = 3; b = c = 0
Tham khảo:
https://hoc24.vn/hoi-dap/tim-kiem?id=219071991005&q=Cho%203%20s%E1%BB%91%20th%E1%BB%B1c%20kh%C3%B4ng%20%C3%A2m%20a%2Cb%2Cc%20v%C3%A0%20a%20b%20c%3D3%20T%C3%ACm%20GTLN%20v%C3%A0%20GTNN%20c%E1%BB%A7a%20bi%E1%BB%83u%20th%E1%BB%A9c%20K%3D%5C%28%5Csqrt%7B3a%201%7D%20%5Csqrt%7B3b%201%7D%20%5Csqrt%7B3c%201%7D%5C%29
\(abc\le\left(\frac{a+b+c}{3}\right)^3\Leftrightarrow\sqrt[3]{abc}\le\frac{a+b+c}{3}\)
BĐT Cô- si
Tham khảo Bất đẳng thức Côsi ( Cauchy ) - ToanHoc.org
bài này chỉ cần thay biểu thức dưới vào biểu thức trên là xong đó
Áp dụng BĐT AM-GM ta có:
\(\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^2+3}{7\sqrt{7}}\)
\(\ge3\sqrt[3]{\dfrac{a^3}{\sqrt{b^2+3}}\cdot\dfrac{a^3}{\sqrt{b^2+3}}\cdot\dfrac{b^2+3}{7\sqrt{7}}}=\dfrac{3a^2}{\sqrt{7}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^2+3}{7\sqrt{7}}\ge\dfrac{3b^2}{\sqrt{7}};\dfrac{c^3}{\sqrt{a^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}+\dfrac{a^2+3}{7\sqrt{7}}\ge\dfrac{3c^2}{\sqrt{7}}\)
Cộng theo vế 3 BĐT trên ta có:
\(2P+\dfrac{a^2+b^2+c^2+9}{7\sqrt{7}}\ge\dfrac{3\left(a^2+b^2+c^2\right)}{\sqrt{7}}\)
\(\Rightarrow P\ge\dfrac{\dfrac{\dfrac{\left(a+b+c\right)^2}{3}+9}{7\sqrt{7}}-\dfrac{3\cdot\dfrac{\left(a+b+c\right)^2}{3}}{\sqrt{7}}}{2}\ge\dfrac{\dfrac{\sqrt{7}}{21}}{2}=\dfrac{\sqrt{7}}{42}\)
Xảy ra khi \(a=b=c=\dfrac{1}{3}\)
am-gm :a3/V(b2+3)+a3/V(b2+3)+(b2+3)/x tự tìm số x dựa theo Min của bài (dự đoán a=b=c=1/3)
a/ Áp dụng BĐT ba điểm :
\(AM+MB\ge AB\) ; \(BM+MC\ge BC\); \(CM+MD\ge CD\) ; \(DM+MA\ge DA\)
Cộng theo vế : \(2\left(MA+MB+MC+MD\right)\ge AB+BC+CD+DA\)
\(\Leftrightarrow MA+MB+MC+MD\ge\frac{AB+BC+CD+DA}{2}\)
Đẳng thức xảy ra khi M là giao điểm của AC và BD
b/ Ta cũng áp dụng BĐT ba điểm :
\(AM+MC\ge AC\) ; \(BM+MD\ge BD\)
Cộng theo vế : \(MA+MB+MC+MD\ge AC+BD\)
Đẳng thức xảy ra khi M là giao điểm của AC và BD